冰封王座人工只能_魔兽争霸3玩家热议 人工智能能否轻松战war3胜职业选手?

魔兽争霸3一直是即时战略类游戏的神作,因为小地图作战模式与英雄体系的加入,使得魔兽的微操与多线操作要求更加复杂,对于玩家精力的消耗非常恐怖,因为被不少想要要入坑即时战略游戏的玩家拒之门外。不过,如果拿wai3与围棋对比,这两款游戏谁的难度会更高呢?贴吧玩家们就进行了一次有趣的争执。

一位玩家在贴吧提出了自己特立独行的观点,玩家表示自己擅长围棋与war3,二者对比起来,常规玩家眼中异常复杂的war3机制,其实比之围棋简单太多,阿尔法狗等级的人工智能在这类游戏上想要战胜玩家,比之在围棋中战胜玩家要简单太多,围棋三百多落点,每一枚棋子的下落都会带来恐怖的变量,即便是人工智能也难以碾压人类。

这位玩家的观点得到了不少网友的赞同,现阶段与人类对抗的阿尔法狗APM值其实是被限制了的,游戏选手才能够与之对抗,早些时候电脑的运算能力并没有被限制,加上一定的机械脚本,即便是没有战斗经验的阿尔法狗也可以轻松战胜李世胜等星际争霸顶级选手;围棋则不同,即便是没有被限制的ai,想要战胜围棋高手也不能一蹴而就,需要大量的对局磨炼。这便是早些时候围棋冠军被打败轰动世界,但是星际,dota等游戏选手们被ai打败却鲜为人知的原因了。

当然,很多玩家对于war3比围棋要简单的观点大都持反对意见,两款不同类型的游戏用相同的标准进行比对明显存在不妥。War3中存在的战场变数明显比围棋更多,诸如开局英雄的选取,每一个单位的行动,甚至是英雄对于装备的取舍都会对电脑带来大量的运算压力,穷举法等,机械性质的运算明显不适用于war3,电脑如果脱离高运算能力的优势,想要利用与人类相同的apm值与选手进行战斗,除非进行大量的学习模拟,不然绝对无法与之对抗。

War3的难度对比号称运算变量超越宇宙间原子数的围棋究竟如何呢?其实二者难易点并不一致,单纯靠变量进行游戏的围棋无论是对于电脑还是玩家都难以企及完美,再强运算能力的电脑也无法用穷举法洞悉所有的变量,依靠的更多还是成千上亿次模拟对局带来的经验;而war3的难度也正是其魅力所在,比之仅依靠变量进行游戏的围棋,war3角力双方是即时进行着行动的,每一毫秒都会迸发出无数种可性能,战术,策略瞬息万变,人类或许无法从apm上战胜电脑,但是却有着其无法比拟的灵活思维,毕竟选手们也是曾依靠BUG战胜过高apm电脑的。

内容概要:本文详细介绍了 DeepSeek 模型在本地环境下的部署流程,涵盖环境准备、模型下载、量化部署、推理代码和服务化部署等多个方面。首先,需要安装必要的依赖库,建使用 Python 3.9 并创建独立的虚拟环境。接着,通过 Hugging Face 的 transformers 库下载模型,提供具体代码示例,包括模型的保存方式。对于 GPU 内存有限的情况,介绍了 8 位或 4 位量化的应用方法,以减少内存占用。此外,还提供了简单的文本生成示例代码,以及使用 FastAPI 将模型部署为 API 服务的方法。最后,针对常见的硬件资源不足、CUDA 版本不兼容、模型下载失败、依赖库版本冲突、量化相关错误、推理速度过慢、中文支持问题、服务部署错误、模型输出不符合预期和许可证限制等问题,给出了详细的解决方案。; 适合人群:具有一定深度学习基础,对模型本地部署感兴趣的开发者和技术人员。; 使用场景及目标:①掌握 DeepSeek 模型的本地部署流程;②解决部署过程中可能出现的各种问题;③实现模型的量化以适应低内存环境;④将模型部署为 API 服务,便于集成到其他系统中。; 阅读建:此教程不仅提供了详细的代码示例,还涵盖了常见问题及其解决方案,因此在学习过程中应结合实际操作进行实践,并根据自己的硬件条件选择合适的部署方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值