《数字信号处理》课程设计
设计题目:基于 MATLAB 的信号 学会 MATLAB 的使用, 掌握在 Windows 环境下信号采集的方法。 掌握数字信号处理的基本概念、基本理论和基本方法。 掌握 MATLAB 设计 FIR 和 R 数字滤波器的方法。 掌握MATLAB处理数字信号、进行频谱分析、设计数字滤波器的编程方法。
Wavread格式说明:
[w,fs,b]=wavread(‘语音信号’),采样值放在向量w中,fs表示采样频率(hz),b表示采样位数。
上机程序:
[y,fs,bit]=wavread('I do片段')%读取音乐片段,fs是采样率
size(y)%求矩阵的行数和列数
y1=y( : ,1);%对信号进行分列处理
n1=length(y1);%取y的长度
t1=(0:n1-1)/fs;%设置波形图横坐标
figure
subplot(2,1,1);
plot(t1,y1); %画出时域波形图
ylabel('幅值');
xlabel('时间(s)');
title('信号波形');
subplot(2,1,2);
Y1=fft(y1);
w1=2/n1*(0:n1-1);%设置角频率
plot(w1,abs(Y1));%画频谱图
title('信号频谱');
xlabel('数字角频率');
ylabel('幅度');
grid on;
sound(y,fs);
实验结果:
1、通过观察频谱知,选取音乐信号的频谱集中在0~0.7*pi之间,抽样点数fs=44100;
2、当采样频率问原来0.5(0.5*fs)倍时:音乐片段音调变得非常低沉,无法辨认原声,播放时间变长;抽样频率减小,抽样点数不变时,其分辨力增大,记录长度变长,声音失真。
3、当采样频率问原来2(2*fs)倍时:音乐片段音调变得尖而细,语速变快,播放时间变短;抽样频率增加,抽样点数不变时,其分辨力下降,记录长度变短,声音失真。
音乐信号的抽取(减抽样)
① 观察音乐信号频率上限,选择适当的抽取间隔对信号进行减抽样(给出两种抽取间隔,代表混叠与非混叠);
② 输出减抽样音乐信号的波形和频谱,观察现象,给出理论解释;
③ 播放减抽样音乐信号,注意抽样率的改变,比较不同抽取间隔下的声音,解释现象。
上机程序:
[y,fs,bit]=wavread('I do片段')
y1=y( : ,1);
n1=length(y1);
tn1=(0:n1-1)/fs;
figure
subplot(2,1,1);
plot(tn1,y1);
ylabel('幅度');
xlabel('时间(s)');
title('原信号波形');
wn1=2/n1*[0:n1-1];
Y1=fft(y1);
subplot(2,1,2);
plot(wn1,abs(Y1));
title('原信号频谱');
xlabel('数字角频率w');
ylabel('幅度');
grid on;
D=2;%设置抽样间隔
y2=y1(1:D:n1);%减抽样
n2=length(y2);%减抽样后信号长度
t2=(0:n2-1)/fs;%设置横坐标
figure
subplot(2,1,1);
plot(t2,y2); %绘制减抽样信号波形图
ylabel('幅度');
xlabel('时间(s)');
title('2:1减抽样信号波形');
Y2=fft(y2); %对y2进行n2点fft谱分析
w2=2/n2*[0:n2-1];
subplot(2,1,2);
plot(w2,abs(Y2));%绘制减抽样信号频谱图
title('2:1减抽样信号频谱');
xlabel('数字角频率w');
ylabel('幅度');
grid on;
sound(y2,fs/D);
实验结果与分析:
1、程序中指标D表示抽样间隔,其值越大,相邻两抽样点之间的距离越远,抽样后漏掉的信息越多,相应的时域信号长度越短;
2、 抽样间隔D=1.1时的信号波形及频谱图,抽样频率大于信号最高频率的两倍,
满足抽样定理,不会发生混叠。抽样间隔D越大,抽样率fs越小,抽样后时域信号长度越短
3 、抽样间隔D=2时的信号波形及频谱图
抽样间隔D=2的信号波形及频谱图,抽样频率小于信号最高频率的两倍,即<2,不满足抽样定理,其频谱图发生混叠,且D越大,混叠越严重,高频成分增加越多,音乐片段音调听起来很沙哑, 音调变得很高。
4、抽样间隔D=5的信号波形及频谱图,抽样频率小于信号最高频率的两倍,即<2,不满足抽样定理,其频谱图发生混叠,音乐片段音调听起来很尖锐。
3、音乐信号的AM调制
① 观察音乐信号频率上限,选择适当调制频率对信号进行调制(给出