CodeForces 1197 D Yet Another Subarray Problem

题面

    不得不说CF还是很擅长出这种让人第一眼看摸不着头脑然后再想想就发现是个SB题的题的hhh(请自行断句)。

    设sum[]为前缀和数组,那么区间 [l,r]的价值为 sum[r] - sum[l-1] - k*上取整([r-(l-1)]/m)。

    或者表示 [l+1,r] 的价值更加简洁一些: sum[r] - sum[l] - k*上取整 ((r-l)/m)。

    表示的区间是什么并不重要,我们只在乎后者的最大值,当r确定的时候,值只与 sum[l] + k*上取整 ((r-l)/m) 有关。

    我们类似扫描线的做法,每次把右扫描线移动一位(r -> r+1),看看会发生什么:

        发现所有 (l%m) == (r%m) 的 l 对应的 sum[l] + k*上取整 ((r-l)/m)  都大了 k,并且还多了一个r的值加了进来,其他的l对应的值都没变。

    于是我们直接开个%m意义下的同余系数组记录一下每个等价类的最小值即可,维护是O(1),查询 O(m)。

 

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=300005;

ll a[N],mn[10],ans;
int n,m,k;

inline void solve(const int M){
	memset(mn,0x7f,sizeof(mn));
	mn[0]=k;
	
	for(int i=1,j=1;i<=n;j++,i++){
		ans=max(ans,a[i]-*min_element(mn,mn+M));
		if(j>=M) j-=M;
		mn[j]=min(mn[j],a[i])+k;
	}
}

int main(){
	scanf("%d%d%d",&n,&m,&k);
	for(int i=1;i<=n;i++) scanf("%lld",a+i),a[i]+=a[i-1];
	solve(m),printf("%lld\n",ans);
	return 0;
}

  

    

转载于:https://www.cnblogs.com/JYYHH/p/11258436.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值