题意:
给出一个长度为 n n n的数组 a a a ,对于一段区间 [ l , r ] [l,r] [l,r] ,其值为 ( ∑ i = l r a i ) − k × ⌈ r − l + 1 m ⌉ (\sum\limits_{i=l}^{r} a_i)-k \times \lceil \frac{r-l+1}{m} \rceil (i=l∑rai)−k×⌈mr−l+1⌉
求数组中最大的区间的值。 ( m ≤ 10 ) (m\leq 10) (m≤10)
题解:
d p dp dp ,状态设计很妙。
不难发现,每 m m m个数,就会增加一个 k k k ,又因为 m m m很小,所以设计这样一个 d p dp dp方程:
设 d p [ i ] [ j ] dp[i][j] dp[i][j]表示以 i i i为结尾,区间长度满足 ( l e n − 1 ) % m + 1 = j (len-1)\%m+1=j (len−1)%m+1=j 。
当 j = 1 j=1 j=1时,转移为: d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ m ] + a [ i ] − k , a [ i ] − k ) dp[i][j]=max(dp[i-1][m]+a[i]-k,a[i]-k) dp[i][j]=max(dp[i−1][m]+a[i]−k,a[i]−k)
反之, d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + a [ i ] dp[i][j]=dp[i-1][j-1]+a[i] dp[i][j]=dp[i−1][j−1]+a[i] 。
对于类似的题目,其实只要分析出跟什么东西有关,并且数字比较小的话,设计 d p dp dp数组的时候可以往取模的方向思考。
代码:
#pragma GCC diagnostic error "-std=c++11"
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <stack>
#define iss ios::sync_with_stdio(false)
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
typedef pair<int, int> pii;
const int mod = 1e9 + 7;
const int MAXN = 3e5 + 5;
const int inf = 0x3f3f3f3f;
ll dp[MAXN][15];
ll a[MAXN];
int main()
{
int n, m, k;
cin >> n >> m >> k;
for (int i = 1; i <= n; i++) {
cin >> a[i];
}
ll ans = 0;
dp[0][m] = 0;
for (int i = 1; i <= m - 1; i++) {
dp[0][i] = -1e18;
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
if (j == 1) {
dp[i][j] = max(dp[i - 1][m] + a[i] - k, a[i] - k);
} else {
dp[i][j] = dp[i - 1][j - 1] + a[i];
}
ans = max(ans, dp[i][j]);
}
}
cout << ans << endl;
}