codeforces 1197D. Yet Another Subarray Problem(dp)

传送门

题意:

给出一个长度为 n n n的数组 a a a ,对于一段区间 [ l , r ] [l,r] [l,r] ,其值为 ( ∑ i = l r a i ) − k × ⌈ r − l + 1 m ⌉ (\sum\limits_{i=l}^{r} a_i)-k \times \lceil \frac{r-l+1}{m} \rceil (i=lrai)k×mrl+1

求数组中最大的区间的值。 ( m ≤ 10 ) (m\leq 10) (m10)

题解:

d p dp dp ,状态设计很妙。

不难发现,每 m m m个数,就会增加一个 k k k ,又因为 m m m很小,所以设计这样一个 d p dp dp方程:

d p [ i ] [ j ] dp[i][j] dp[i][j]表示以 i i i为结尾,区间长度满足 ( l e n − 1 ) % m + 1 = j (len-1)\%m+1=j (len1)%m+1=j

j = 1 j=1 j=1​时,转移为: d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ m ] + a [ i ] − k , a [ i ] − k ) dp[i][j]=max(dp[i-1][m]+a[i]-k,a[i]-k) dp[i][j]=max(dp[i1][m]+a[i]k,a[i]k)

反之, d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + a [ i ] dp[i][j]=dp[i-1][j-1]+a[i] dp[i][j]=dp[i1][j1]+a[i]

对于类似的题目,其实只要分析出跟什么东西有关,并且数字比较小的话,设计 d p dp dp数组的时候可以往取模的方向思考。

代码:

#pragma GCC diagnostic error "-std=c++11"
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <stack>
#define iss ios::sync_with_stdio(false)
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
typedef pair<int, int> pii;
const int mod = 1e9 + 7;
const int MAXN = 3e5 + 5;
const int inf = 0x3f3f3f3f;
ll dp[MAXN][15];
ll a[MAXN];
int main()
{
    int n, m, k;
    cin >> n >> m >> k;
    for (int i = 1; i <= n; i++) {
        cin >> a[i];
    }
    ll ans = 0;
    dp[0][m] = 0;
    for (int i = 1; i <= m - 1; i++) {
        dp[0][i] = -1e18;
    }
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            if (j == 1) {
                dp[i][j] = max(dp[i - 1][m] + a[i] - k, a[i] - k);
            } else {
                dp[i][j] = dp[i - 1][j - 1] + a[i];
            }
            ans = max(ans, dp[i][j]);
        }
    }
    cout << ans << endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值