软件准备
jdk-7u80-linux-x64.tar.gz
hadoop-2.6.4.tar.gz
ssh客户端
JDK安装配置
下载解压 jdk-7u80-linux-x64.tar.gz。
配置环境变量, 编辑 .bash_profile 文件,在文件末尾添加以下内容:
# Java Env
export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.7.0_80.jdk/Contents/Home
export JRE_HOME=/Library/Java/JavaVirtualMachines/jdk1.7.0_80.jdk/Contents/Home/jre
export PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
保存后,运行 source .bash_profile,使环境变量立即生效。
输入 java -version 可以看到成功安装的JDK版本信息。
Hadoop安装配置
下载解压 hadoop-2.6.4.tar.gz
修改 .bash_profile 文件配置 Hadoop 环境变量,在文件末尾添加以下内容:
# Hadoop Env
export HADOOP_HOME=/Users/jackiehff/Software/hadoop-2.6.4
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
保存后,运行 source .bash_profile, 使 Hadoop 环境变量立即生效。
修改 Hadoop 环境变量配置文件 etc/hadoop/hadoop-env.sh,在文件末尾添加以下内容:
# The java implementation to use.
export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.7.0_80.jdk/Contents/Home
export HADOOP_PREFIX=/Users/jackiehff/Software/hadoop-2.6.4
输入 hadoop version 可以看到成功安装的 Hadoop 版本信息。
输入 hadoop 可以看到 hadoop 命令的用法。
单机模式
Hadoop默认配置运行于非分布式模式中,即作为单个的 Java 进程运行,这样调试起来会很方便。下面运行一下自带的 WordCount 程序。
mkdir input
cp etc/hadoop/*.xml input
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.4.jar grep input output 'dfs[a-z.]+'
运行过程大致如下:
注意:output 目录必须事先不存在。查看运行结果:
cat outut/*
运行结果如下:
伪分布式模式
配置ssh
因为伪分布模式下,即使所有节点都在一台机器上,Hadoop 也需要通过 ssh 登录,这一步的目的是配置本机无密码 ssh 登录。
验证是否可以不需要密码 ssh 到 localhost:
ssh localhost
如果不行,执行如下命令:
sh-keygen -t dsa -P '' -f ~/.ssh/id_dsacat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
再次执行 ssh localhost,就无需密码。
修改Hadoop配置文件
伪分布式模式主要涉及以下配置信息:
修改 Hadoop 的核心配置文件 core-site.xml, 主要是配置 HDFS 的地址和端口号。
fs.defaultFS
hdfs://localhost:9000
hadoop.tmp.dir
/Users/jackiehff/Software/hadoop-2.6.4/tmp
修改 Hadoop 中 HDFS 的配置文件 hdfs-site.xml, 主要是配置数据副本。
dfs.replication
1
修改 Hadoop 中 MapReduce 配置文件 mapred-site.xml, 主要是配置 MapReduce 框架名称。
mapreduce.framework.name
yarn
修改 Hadoop 中 YARN 的配置文件 yarn-site.xml, 主要用于指定 shuffle server。
yarn.nodemanager.aux-services
mapreduce_shuffle
运行Hadoop
格式化文件系统
hdfs namenode -format
启动 NameNode 和 DataNode 守护进程 start-dfs.sh
Hadoop 守护进程日志输出写到 $HADOOP_LOG_DIR 指定的目录 (默认是 $HADOOP_HOME/logs) 输出结果如下:
16/04/11 21:38:26 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicableStarting namenodes on [localhost]
localhost: starting namenode, logging to /Users/jackiehff/Software/hadoop-2.6.4/logs/hadoop-jackiehff-namenode-jackiehff.local.out
localhost: starting datanode, logging to /Users/jackiehff/Software/hadoop-2.6.4/logs/hadoop-jackiehff-datanode-jackiehff.local.out
Starting secondary namenodes [0.0.0.0]0.0.0.0: starting secondarynamenode, logging to /Users/jackiehff/Software/hadoop-2.6.4/logs/hadoop-jackiehff-secondarynamenode-jackiehff.local.out
16/04/11 21:39:39 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
使用 **jps** 命令查看当前所有 Java 进程
可以看到 HDFS 启动成功。
启动 ResourceManager 和 NodeManager 进程
start-yarn.sh
输出信息如下:
starting yarn daemonsstarting resourcemanager, logging to /Users/jackiehff/Software/hadoop-2.6.4/logs/yarn-jackiehff-resourcemanager-jackiehff.local.out
localhost: starting nodemanager, logging to /Users/jackiehff/Software/hadoop-2.6.4/logs/yarn-jackiehff-nodemanager-jackiehff.local.out
使用 jps 查看当前所有 Java 进程
可以看到 NodeManager 和 ResourceManager 启动成功。
浏览器访问 ResourceManager, 地址:http://localhost:8088/
创建执行MapReduce 任务所需的HDFS 目录。
hdfs dfs -mkdir /input
拷贝输入文件到分布式文件系统
hdfs dfs -put etc/hadoop/* /input
运行示例程序
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.4.jar grep /input output dfs'[a-z.]+'
查看运行结果
hdfs dfs -cat output/*
结果如下图所示:
可以在浏览器中查看相关 Job
停止 HDFS
stop-dfs.sh
停止 YARN
stop-yarn.sh
点击并拖拽以移动