原题地址
题目介绍
题意
这同样是一道搜索题,所不同的是要搜索的图是三维的而不是二维的。但这并没什么大的改变,只是增加了两个搜索的方向而已。
陷阱
要注意的地方是,所给出的起点终点的坐标是按照 列,行,层的顺序。
关于BFS
与DFS不同,BFS能保证所搜到的路径一定是最短路径,所以我们不需要维护一个多维(此处为3维)数组来记录访问到每一点的最小步数,只需要维护一个多维数组来标记是否走过就可以了。DFS中是要不停回溯来找最短路径的,但是BFS是不需要的。这是BFS本身的性质所决定的,BFS能保证第一次搜索到某一点时所走的路径就是到该点的最短路径。以后如果还能再走到该点,那么所走的路径一定是大于等于第一次搜索到的路径的。所以,BFS是不需要回溯的。(自己之前也有误解。。囧)
代码
#include<iostream>
#include<queue>
using namespace std;
#include<cstdio>
#include<cstring>
#define INF 0x3f3f3f3f
struct node
{
int x,y,z;
int level;
node(int i,int j,int k,int l):x(i),y(j),z(k),level(l){};
void set(int i,int j,int k,int l)
{
x=i;
y=j;
z=k;
level=l;
}
};
int d[6][3]={0,1,0,0,-1,0,1,0,0,-1,0,0,0,0,1,0,0,-1};
char m[10][10][10];
bool used[10][10][10];
int s[3],e[3];
int n,step;
queue<node> q;
void bfs(int x,int y,int z)
{
int i,j,k,l;
node pos(x,y,z,0);
q.push(pos);
used[x][y][z]=1;
while(!q.empty())
{
pos = q.front();
i = pos.x;
j = pos.y;
k = pos.z;
l = pos.level;
q.pop();
if(i==e[2]&&j==e[1]&&k==e[0])
{
if(l<step)
step=l;
continue;
}
for(int t=0;t<6;t++)
{
x=i+d[t][0];
y=j+d[t][1];
z=k+d[t][2];
if(x<0||x>=n||y<0||y>=n||z<0||z>=n||m[x][y][z]!='O'||used[x][y][z])
continue;
pos.set(x,y,z,l+1);
used[x][y][z]=1;
q.push(pos);
}
}
}
int main()
{
char str[6];
while(cin>>str>>n)
{
memset(used,0,sizeof used);
step = INF;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
for(int k=0;k<n;k++)
cin>>m[i][j][k];
cin>>s[0]>>s[1]>>s[2]>>e[0]>>e[1]>>e[2];
cin>>str;
bfs(s[2],s[1],s[0]);
if(step!=INF)
cout<<n<<" "<<step<<endl;
else
cout<<"NO ROUTE"<<endl;
}
}
used数组表示是否走过,1为走过,0为没有走过。