有一个n个点的无向图,有m次查询,每次查询给出一些(xi,yi)
令dist(x,y)表示x和y点在图中最短距离,dist(x,x)=0,如果x,y不连通则dist(x,y) = inf
每次查询图中有多少个点v与至少一个这次询问给出的(xi,yi)满足dist(v,xi)<=yi
#include <iostream>
#include <sstream>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <string.h>
#include <bitset>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define hr putchar(10)
#define pb push_back
#define lc (o<<1)
#define rc (lc|1)
#define mid ((l+r)>>1)
#define ls lc,l,mid
#define rs rc,mid+1,r
#define x first
#define y second
#define io std::ios::sync_with_stdio(false)
#define endl '\n'
#define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;})
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int P = 1e9+7, P2 = 998244353, INF = 0x3f3f3f3f;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;}
ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;}
inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;}
//head
const int N = 1e3+10;
int n, m, q, vis[N], d[N];
vector<int> g[N];
bitset<N> f[N][N], ans;
queue<int> que;
int main() {
scanf("%d%d%d", &n, &m, &q);
REP(i,1,m) {
int u, v;
scanf("%d%d", &u, &v);
g[u].pb(v),g[v].pb(u);
}
REP(i,1,n) {
REP(j,1,n) vis[j]=0,d[j]=n;
vis[i] = 1, d[i] = 0, que.push(i);
while (que.size()) {
int u = que.front(); que.pop();
for (int v:g[u]) {
d[v] = min(d[v], d[u]+1);
if (vis[v]) continue;
vis[v] = 1;
que.push(v);
}
}
REP(j,1,n) f[i][d[j]].set(j);
REP(j,1,n-1) f[i][j]|=f[i][j-1];
}
while (q--) {
int k;
scanf("%d", &k);
ans.reset();
while (k--) {
int x, y;
scanf("%d%d", &x, &y);
ans |= f[x][min(y,n-1)];
}
printf("%d\n", (int)ans.count());
}
}