# 【回归分析】[6]--残差分析

【回归分析】[6]--残差分析

在这一节，我们讨论一下关于残差的问题。主要是为了验证四个假设。

1. 关于模型形式的假定：模型关于参数是线性的-- 通过观察Y-- X的散点图;
2. 关于误差的假定：a.方差服从正太分布    b.均值为0     c.方差相同      d.误差相互独立-- pp图;
3. 关于预测变量的假定 : a.预测变量是非随机的    b.数据是无误差的  c.预测变量线性无关;
4. 关于观测的假定 : 影响力相同;

这一次，我们就要之前的一个例子来做解释。Mathematica数据处理(1)--安斯库母四重奏

datafrash = {{{10., 8.04}, {8., 6.95}, {13., 7.58}, {9., 8.81}, {11.,
8.33}, {14., 9.96}, {6., 7.24}, {4., 4.26}, {12., 10.84}, {7.,
4.82}, {5., 5.68}}, {{10., 9.14}, {8., 8.14}, {13., 8.74}, {9.,
8.77}, {11., 9.26}, {14., 8.1}, {6., 6.13}, {4., 3.1}, {12.,
9.13}, {7., 7.26}, {5., 4.74}}, {{10., 7.46}, {8., 6.77}, {13.,
12.74}, {9., 7.11}, {11., 7.81}, {14., 8.84}, {6., 6.08}, {4.,
5.39}, {12., 8.15}, {7., 6.42}, {5., 5.73}}, {{8., 6.58}, {8.,
5.76}, {8., 7.71}, {8., 8.84}, {8., 8.47}, {8., 7.04}, {8.,
5.25}, {19., 12.5}, {8., 5.56}, {8., 7.91}, {8., 6.89}}};

data = SortBy[datafrash[[#]], First] & /@ {1, 2, 3, 4};
lm = LinearModelFit[#, x, x] & /@ data

Show[ListPlot[data[[#]], ImageSize -> Medium],
Plot[lm[[#]][x], {x, 0, 20}, ImageSize -> Medium]] & /@ {1, 2, 3,4}

(*残差，标准化残差，删除单个误差的残差*)
cc = lm[[#]]["FitResiduals"] & /@ {1, 2, 3, 4};
Row[ListPlot[#, ImageSize -> Medium, Filling -> Axis] & /@lm[[#]][{"FitResiduals", "StandardizedResiduals","StudentizedResiduals"}]] & /@ {1, 2, 3, 4}

Row[{ProbabilityPlot[cc[[#]], PlotLabel -> "pp图", PlotRange -> All, ImageSize -> Medium],QuantilePlot[cc[[#]], PlotLabel -> "qq图", PlotRange -> All,ImageSize -> Medium]}] & /@ {1, 2, 3, 4}

ListPlot[lm[[#]]["CookDistances"], Filling -> Axis,ImageSize -> Medium, PlotRange -> Full] & /@ {1, 2, 3, 4}

hat = lm[[#]]["HatDiagonal"] & /@ {1, 2, 3, 4};
cc = lm[[#]]["FitResiduals"] & /@ {1, 2, 3, 4};
degreeoffree =
lm[[#]]["ANOVATableDegreesOfFreedom"][[-3]] & /@ {1, 2, 3, 4};
SSE = lm[[#]]["ANOVATableSumsOfSquares"][[-2]] & /@ {1, 2, 3, 4};
hat[[#]]) + ((degreeoffree[[#]] + 1)/(1 -
hat[[#]]))*((cc[[#]]^2)/(SSE[[#]] - cc[[#]]^2)) & /@ {1, 2,
3, 4};
ListPlot[hadi[[#]], Filling -> Axis, ImageSize -> Medium,
PlotRange -> All] & /@ {1, 2, 3, 4}

(*找到异常点的位置*)
Position[hadi, _?(# > 1 &)]

(*提取数据点*)
Extract[data, %]

2016/10/30

• 0
点赞
• 0
评论
• 8
收藏
• 一键三连
• 扫一扫，分享海报

08-31

07-01
04-12
12-02
08-30 9万+
07-26 1754
08-30 7796
07-14 7万+
12-27 1万+
12-03 140
12-18 1622
07-26 1万+
02-16 5533
08-17 1万+
12-11 1万+

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、C币套餐、付费专栏及课程。