N个降序数组,找到最大的K个数

问题定义

这个问题来自网上看到的百度算法题,感觉很不错,问题定义如下:

假定有20个有序数组,每个数组有500个数字,降序排列,数字类型32位uint数值,现在需要取出这10000个数字中最大的500个,怎么做?

解决方法

这里其实有很多解决方法,笨拙的或者巧妙的。这里介绍一个非常不错的方法,使用最大堆堆排序:

1. 建立大顶堆,维度为数组的个数,这里为20(第一次 插入的是每个数组中最大的值,即第一个元素)。

2. 删除最大堆堆顶,保存到数组或者栈中,然后向最大堆插入删除的元素所在数组的下一个元素。

3. 重复第1,2个步骤,直到删除个数为最大的K个数,这里为500.

代码:

#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <functional> 
using namespace std;

#define ROWS 20
#define COLS 500

int data[ROWS][COLS];

void CreateData()
{
    for(int i=0; i<ROWS; i++)
    {
        for(int j=0; j<COLS;j++)
        {
            data[i][j] = rand();                         //生成随机元素
        }
    }
    for( int i=0; i<ROWS; i++)
        sort(data[i],data[i]+COLS, greater<int>());     //对每一行降序排列
}

struct Node 
{
    int *p;  //指向某个列,因为要放入优先队列中,所以要比较大小,就用结构体封装了下
    bool operator<(const struct Node &node) const
    {
        return *p < *node.p;
    }
};

void OutMinData( int k)
{
    struct Node arr[ROWS];
    for(int i=0; i<ROWS;i++)
    {
        arr[i].p = data[i];                       //初始化指针指向各行的首位
    }
    priority_queue<Node > queue( arr, arr+ROWS );  //使用优先队列,默认是大堆

    for( int i=0; i<k&&i<COLS; i++)                //算法核心就是这个循环
    {
        Node temp = queue.top();                   //取出队列中最大的元素
        cout << *temp.p << " " <<endl;            
        queue.pop();                               //从队列里删除    
        temp.p++;                                  //对应行的指针后移
        queue.push( temp );                        //这里面有log(ROWS)次操作,所以算法的总复杂度为O(klog(20))
    }
    
}

int main()
{
    CreateData();  //生成数据
    int k=500;
    OutMinData( k ); //输出k个元素,这里k不要大于列数COL,可以改进,去掉这个限制,不过会让程序不好懂,就没加
    return 0;
}

题外话:

上面的是有序数组,但是如果是无序数组呢,可以建立维度为K(这里为500)的最小堆,然后每次删除最小堆的堆顶,直到遍历完所有的数,剩下的就是所求的最大K个数。

 


转载于:https://www.cnblogs.com/ywl925/p/3794852.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值