摘要Goyal, Palash, Sujit Rokka Chhetri, and Arquimedes Canedo. "dyngraph2vec: Capturing network dynamics using dynamic graph representation learning." Knowledge-Based Systems 187 (2020): 104816.
针对图表示的学习,是在向量空间中获取图的各种性质的基本任务和前提。近期研究通常使用静态图进行图表示学习。但现实世界的网络会随着时间的推移而发展,并具有变化的动态,而事实上,能够捕获这样的演变是预测看不见的网络的特性的关键之处。本篇论文提出了一种嵌入方法,该方法在动态图中学习演化的结构,可以预测不可见的链路,且具有较高的精度。论文中的模型通过在每个时间步长的嵌入函数,使用来自图进化的信息来捕获网络动态,从而能够以更高的精度来预判链接。
1 引言了解和分析图形是过去几十年来研究的重要主题。现实世界中的许多问题可以表述为图中的链接预测。例如,作者协作网络中的链接预测可用于预测潜在的未来作者协作。同样,可以使用蛋白质相互作用网络发现蛋白质之间的新连接,并可以使用社交网络预测新的友谊。这些研究工作使用图表示学习,用固定维数嵌入表示网络中的每个节点,并将网络空间中的链接预测映射到嵌入空间中的最近邻居搜索。
先前关于图表示学习的工作主要集中在两种类型的静态图上:
聚合,包括直到时间T的所有边;
快照,其