activiti动态增加节点_dyngraph2vec:使用动态图表示学习捕获网络动态

本文介绍了dyngraph2vec模型,该模型通过动态图表示学习来捕获网络演进,提高了链路预测的准确性。与静态图嵌入方法相比,dyngraph2vec利用递归层学习时间模式,适用于多种实际网络,如作者协作和社交网络。实验结果显示,该模型在链接预测任务上表现出色,优于现有方法。
摘要由CSDN通过智能技术生成

Goyal, Palash, Sujit Rokka Chhetri, and Arquimedes Canedo. "dyngraph2vec: Capturing network dynamics using dynamic graph representation learning." Knowledge-Based Systems 187 (2020): 104816.

摘要

       针对图表示的学习,是在向量空间中获取图的各种性质的基本任务和前提。近期研究通常使用静态图进行图表示学习。但现实世界的网络会随着时间的推移而发展,并具有变化的动态,而事实上,能够捕获这样的演变是预测看不见的网络的特性的关键之处。本篇论文提出了一种嵌入方法,该方法在动态图中学习演化的结构,可以预测不可见的链路,且具有较高的精度。论文中的模型通过在每个时间步长的嵌入函数,使用来自图进化的信息来捕获网络动态,从而能够以更高的精度来预判链接。

1 引言

    了解和分析图形是过去几十年来研究的重要主题。现实世界中的许多问题可以表述为图中的链接预测。例如,作者协作网络中的链接预测可用于预测潜在的未来作者协作。同样,可以使用蛋白质相互作用网络发现蛋白质之间的新连接,并可以使用社交网络预测新的友谊。这些研究工作使用图表示学习,用固定维数嵌入表示网络中的每个节点,并将网络空间中的链接预测映射到嵌入空间中的最近邻居搜索。

    先前关于图表示学习的工作主要集中在两种类型的静态图上:

  1. 聚合,包括直到时间T的所有边;

  2. 快照,其

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值