二次不等式习题

前言

典例剖析

例1已知不等式\(ax^2-bx-1\ge 0\)的解集是\([-\cfrac{1}{2},-\cfrac{1}{3}]\),求不等式\(x^2-bx-a<0\)的解集。

分析:由题目已知条件可知,方程\(ax^2-bx-1= 0\)的两个根是\(x=-\cfrac{1}{2}\)\(x=-\cfrac{1}{3}\)

故由韦达定理可知\((-\cfrac{1}{2})+(-\cfrac{1}{3})=-\cfrac{-b}{a}=\cfrac{b}{a}\)\((-\cfrac{1}{2})\times(-\cfrac{1}{3})=\cfrac{-1}{a}\)

解得\(a=-6,b=5\),故所求解集的不等式即为\(x^2-5x+6<0\)

解得\(2<x<3\),故\(x\in (2,3)\)

例2已知二次函数\(f(x)>0\)解集\(\{x\mid x<1或x>3\}\),求\(f(log_2^\;x)<0\)的解集。

分析:由三个二次的关系可知,\(f(x)<0\)的解集为\(\{x\mid 1<x<3\}\)

故由\(f(log_2^\;x)<0\)可得,\(1<log_2^\;x<3\),即\(log_2\;2<log_2^\;x<log_2\;8\),故\(2<x<8\)

例3【2018届山东菏泽期中】关于\(x\)的不等式\(x^2-(a+1)x+a<0\)的解集中,恰有3个整数,则\(a\)的取值范围是【】

$A(4,5)$ $B(-3,2)\cup(4,5)$ $C(4,5]$ $D[-3,2)\cup(4,5]$

分析:由于\(x\)的不等式\(x^2-(a+1)x+a<0\)可以转化为\((x-a)(x-1)<0\)

故函数\(f(x)=(x-1)(x-a)\)有两个零点,一个为定零点\(x=1\),另一个为动零点\(x=a\)

做出其图像,由图像可知需要分类讨论,

\(a>1\)时,解集为\((1,a)\),此时若要包含3个整数,需要\(4<a\leq 5\)

\(a<1\)时,解集为\((a,1)\),此时若要包含3个整数,需要\(-3\leq a<-2\)

\(a\in [-3,2)\cup(4,5]\),故选\(D\)

例4关于\(x\)的不等式\(ax-b<0\)的解集是\((1,+\infty)\),则关于\(x\)的不等式\((ax+b)(x-3)>0\)的解集是【】

$A.(-\infty,-1)\cup(3,+\infty)$ $B.(1,3)$ $C.(-1,3)$ $D.(-\infty,1)\cup(3,+\infty)$

分析:由不等式\(ax-b<0\)的解集是\((1,+\infty)\),即\(ax<b\)的解集是\((1,+\infty)\),则\(a=b<0\)

故不等式\((ax+b)(x-3)>0\)可化为\((x+1)(x-3)<0\),解得\(-1<x<3\),故选\(C\).

例5若不等式\(x^2-(a+1)x+a\leqslant 0\)的解集是\([-4,3]\)的子集,则\(a\)的取值范围是【】

$A.[-4,1]$ $B.[-4,3]$ $C.[1,3]$ $D[-1,3]$

分析:原不等式为\((x-a)(x-1)\leqslant 0\)

\(a<1\)时,原不等式解集为\([a,1]\),此时只要\(a\geqslant 4\)即可,即\(-4\leqslant a<1\);

\(a=1\)时,原不等式的解为\(x=1\),此时符合要求;

\(a>1\)时,原不等式的解集为\([1,a]\),此时只要\(a\leqslant 3\)即可,即\(1<a\leqslant 3\);

综上可知,\(-4\leqslant a\leqslant 3\),故选\(B\).

转载于:https://www.cnblogs.com/wanghai0666/p/11416216.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值