函数的零点和极值点2【中阶和高阶辅导】

前言

涉及到函数的零点和极值点的问题,与转化划归思想、数形结合思想有着紧密的联系。

  • 函数\(y=f(x)\)\(n\)个零点 \(\Longleftrightarrow\) 方程\(f(x)=0\)\(n\)个不同的根 \(\Longleftrightarrow\) 两个函数图像\(y=f(x)\)\(y=0\)\(n\)个不同的交点,思想方法:数形结合。

  • 函数\(y=f(x)\)\(n\)个极值点 \(\Longleftrightarrow\) 函数\(y=f'(x)\)\(n\)个不同的零点(变号零点1 ) \(\Longleftrightarrow\) 两个函数图像\(y=f'(x)\)\(y=0\)\(n\)个不同的交点,思想方法:数形结合。

接上一篇同名博文:函数的零点和极值点1

典例剖析

例21【2014高考新课标Ⅰ卷理科,第11题】

已知函数\(f(x)=ax^3-3x^2+1\),若函数\(f(x)\)存在唯一零点 \(x_0\),且\(x_0>0\),则\(a\)的取值范围是【C】

$A(2,+\infty)$ $B(1,+\infty)$ $C(-\infty,-2)$ $D(-\infty,-1)$

法1:由于函数\(f(x)\)存在唯一零点 \(x_0\),且\(x_0>0\)

则方程\(f(x)=0\)有唯一的正实数解,即\(ax^3-3x^2+1=0\)有唯一的正实数解,

即方程\(a=\cfrac{3x^2-1}{x^3}\)有唯一的正实数解,

即函数\(y=a\)和函数\(y=h(x)=\cfrac{3x^2-1}{x^3}=\cfrac{3}{x}-\cfrac{1}{x^3}(x>0)\)有唯一的交点,

其余思路待补充。

法2:先将题目转化为,方程\(ax^3=3x^2-1\)有唯一的正实数解,

则静态函数\(y=3x^2-1\)和动态函数\(y=ax^3\)只能在区间\((0 ,+\infty)\)上有交点,

此处需要我们知道函数\(y=ax^3\)的参变数\(a\)的作用,

由图像可知,当\(a\leq 0\)时,都不满足题意,故需要\(a<0\)

但当\(a\)取很小的负值时,显然满足题意,当\(a\)为某一个恰当的负值时,两个曲线在\(x<0\)时可能相切,

当然,此处你可能还会认为是有相切,还有相交,这不要紧,我们通过下述的计算就能回答这个疑惑。

设切点坐标为\(P(x_0,y_0)\),则有\(x_0<0\)

则有\(\left\{\begin{array}{l}{3ax_0^2=6x_0}\\{y_0=ax_0^3}\\{y_0=3x_0^2-1}\end{array}\right.\)

解得\(x_0=-1\)\(y_0=2\),将切点\(P(-1,2)\)代入\(y=ax^3\),解得\(a=-2\)

故当\(a<-2\)时,两条曲线在\(x<0\)上没有交点,只在\(x>0\)上有交点,故满足题意,

\(a\)的取值范围时\((-\infty,-2)\),故选\(C\)

法3:利用导数方法,同时注意题目的隐含条件,\(f(0)=1\)

\(f'(x)=3ax^2-6x=3x(ax-2)\)

①当\(a=0\)时,原函数为\(y=-3x^2+1\),有两个零点,不符合题意,舍去。

②当\(a>0\)时,由导函数的图像可知,函数\(f(x)\)在区间\((-\infty,0)\)上单调递增,在区间\((0,\cfrac{2}{a})\)上单调递减,在区间\((\cfrac{2}{a},+\infty)\)上单调递增,

此时函数在区间\((-\infty,0)\)上必有一个零点,不符合题意,舍去。

③当\(a<0\)时,由导函数的图像可知,函数\(f(x)\)在区间\((-\infty,\cfrac{2}{a})\)上单调递减,在区间\((\cfrac{2}{a},0)\)上单调递增,在区间\((0,+\infty)\)上单调递减,

此时只需要函数\(f(x)\)的极小值大于零即可,即\(f(\cfrac{2}{a})>0\)

\(a\cdot (\cfrac{2}{a})^3-3\cdot (\cfrac{2}{a})^2+1>0\),化简得到\(a^2>4\)

解得\(a<-2\)\(a>2\),又\(a<0\),故\(a<-2\)

\(a\)的取值范围时\((-\infty,-2)\),故选\(C\)

例22【学生问题】

定义在\(R\)上的函数\(f(x)\)满足\(f(x)+f(x+4)=16\),当\(x\in (0,4]\)时,\(f(x)=x^2-2^x\);则函数\(f(x)\)\([-4,2016]\)上的零点个数是【B】

$A、504$ $B、505$ $C、1008$ $D、1009$

分析:由\(f(x)+f(x+4)=16\),得到\(f(x+4)+f(x+8)=16\),两式相减得到,

\(f(x+8)=f(x)\),即\(T=8\)

\(x\in (0,4]\)时,\(f(x)=x^2-2^x\)已经知道,关键是求得\(x\in (4,8]\)上的解析式;

\(0<x\leq 4\)\(4<x+4\leq 8\)

\(f(x+4)=16-f(x)\),令\(x+4=t\),则\(x=t-4\),则\(t\in (4,8]\)

\(f(t)=16-f(t-4)\)\(t\in (4,8]\)

\(f(x)=16-f(x-4)\)\(x\in (4,8]\)

则周期函数\(f(x)=\left\{\begin{array}{l}{x^2-2^x,0<x\leq 4}\\{16-(x-4)^2-2^{x-4},4<x\leq 8}\end{array}\right.\)

接下来的难点是做函数\(f(x)\)在一个周期上的图像,

重点是做\(y=x^2-2^x,0<x\leq 4\)的图像。

结合上图可以做出函数\(y=x^2-2^x,0<x\leq 4\)的图像。

再做出\(x\in (4,8]\)时的\(f(x)\)的图像。

在区间\([0,2016]\)上,包含\(\cfrac{2016}{8}=252\)个周期,每个周期上的零点有两个,

故有\(252\times2=504\)个,但是在\([-4,0)\)上还有一个,

故共有\(505\)个零点,故选\(B\)

例23【2018广东中山期末】已知\(\cfrac{1}{3}\leq k<1\),函数\(f(x)=|2^x-1|-k\)的零点分别为\(x_1\)\(x_2\)\((x_1<x_2)\),函数\(g(x)=|2^x-1|-\cfrac{k}{2k+1}\)的零点分别为\(x_3\)\(x_4\)\((x_3<x_4)\),则\(x_4+x_2-(x_3+x_1)\)的最小值为【】

$A.1$ $B.log_23$ $C.log_26$ $D.4$

分析:函数\(f(x)\)的零点问题,转化为函数\(y=|2^x-1|\)\(y=k\)的图像交点的横坐标问题,同理,函数\(g(x)\)的零点问题,转化为函数\(y=|2^x-1|\)\(y=\cfrac{k}{2k+1}\)的图像交点的横坐标问题,

又由于\(y=\cfrac{k}{2k+1}=\cfrac{1}{2+\frac{1}{k}}\),在\(k\in [\cfrac{1}{3},1)\)上单调递增,即当\(k\)的取值从\(\cfrac{1}{3}\)增大到\(1\)时,\(\cfrac{k}{2k+1}\)的取值对应的从\(\cfrac{1}{5}\)增大到\(\cfrac{1}{3}\)

做出如下的图像,从图像入手分析,当\(y=k\)向上平移时,\(x_2-x_1\)逐渐增大,同理对应的\(x_4-x_3\)逐渐增大,所以要使得\(x_4+x_2-(x_3+x_1)\)取到最小值,则需要\(x_4-x_3\)\(x_2-x_1\)同时取到最小值,此时\(k=\cfrac{1}{3}\),同时对应的有\(\cfrac{k}{2k+1}=\cfrac{1}{5}\)

此时,\(|2^{x_2}-1|=\cfrac{1}{3}\),即\(2^{x_2}-1=\cfrac{1}{3}\),解得\(x_2=log_2\cfrac{4}{3}\),又\(|2^{x_1}-1|=\cfrac{1}{3}\),即\(1-2^{x_1}=\cfrac{1}{3}\),解得\(x_1=log_2\cfrac{2}{3}\)

同理对应的有\(|2^{x_4}-1|=\cfrac{1}{5}\),即\(2^{x_4}-1=\cfrac{1}{5}\),解得\(x_4=log_2\cfrac{6}{5}\),又\(|2^{x_3}-1|=\cfrac{1}{5}\),即\(1-2^{x_3}=\cfrac{1}{5}\),解得\(x_3=log_2\cfrac{4}{5}\)

故此时\([x_4+x_2-(x_3+x_1)]_{min}=(log_2\cfrac{6}{5}-log_2\cfrac{4}{5})+(log_2\cfrac{4}{3}-log_2\cfrac{2}{3})=log_23\),故选\(B\)

解后反思:比如将条件更改为\(\cfrac{1}{3}\leq k\leq \cfrac{4}{5}\),那么用相应的思路和方法,可以求解\(x_4+x_2-(x_3+x_1)\)的取值范围;

例24【2018届广东东莞模拟】已知函数\(f(x)\),任取两个不相等的正数\(x_1\)\(x_2\),总有\([f(x_1)-f(x_2)](x_1-x_2)>0\),对于任意的\(x>0\),总有\(f[f(x)-lnx]=1\)。若\(g(x)=f'(x)+f(x)-m^2+m\)有两个不同的零点,则正实数\(m\)的取值范围是___________。

分析:本题目的难点之一是利用代换法先求得函数\(f(x)\)的解析式;然后再求正实数\(m\)的取值范围。

由于任意不等正数\(x_1\)\(x_2\),有\([f(x_1)-f(x_2)](x_1-x_2)>0\),则\(f(x)\)\((0,+\infty)\)上单调递增,

\(f(x)-lnx=t\),则\(f(t)=1\)①,又由于\(f(x)-lnx=t\),即\(f(x)=lnx+t\),令\(x=t\),则\(f(t)=lnt+t\)②,

由①②可知,\(lnt+t=1\),即\(lnt=1-t\),观察可知,\(t=1\),即函数\(f(x)\)的解析式为\(f(x)=lnx+1\)

接下来,用常规方法求正实数\(m\)的取值范围。

由题目可知,\(g(x)=lnx+1+\cfrac{1}{x}-m^2+m\)有两个不同的零点,即方程\(lnx+1+\cfrac{1}{x}-m^2+m=0\)有两个不同的根,

整体分离参数得到,\(m^2-m=lnx+1+\cfrac{1}{x}\),令\(h(x)=lnx+1+\cfrac{1}{x}\)

\(h'(x)=\cfrac{x-1}{x^2}\),则\(x\in (0,1)\)时,\(h'(x)<0\)\(h(x)\)单调递减,\(x\in (1,+\infty)\)时,\(h'(x)>0\)\(h(x)\)单调递增,

\(h(x)_{min}=h(1)=2\),则题目转化为\(m^2-m>2\),解得\(m<-1\)\(m>2\),又由\(m>0\),可得\(m>2\)

即正实数\(m\)的取值范围是\((2,+\infty)\).

例25【2019届高三理科数学二轮用题】若函数\(f(x)=(a+1)e^{2x}-2e^x+(a-1)x\)有两个极值点,则实数\(a\)的取值范围是【】

$A.(0,\cfrac{\sqrt{6}}{2})$ $B.(1,+\cfrac{\sqrt{6}}{2})$ $C.(-\cfrac{\sqrt{6}}{2},+\cfrac{\sqrt{6}}{2})$ $D.(\cfrac{\sqrt{6}}{3},1)\cup(1,\cfrac{\sqrt{6}}{2})$

分析:函数\(f(x)\)有两个极值点,则方程\(f'(x)=0\)有两个不同实根,且是变号实根;

\(f'(x)=2(a+1)e^{2x}-2e^x+(a-1)=0\)有两个不同实根,令\(e^x=t>0\)

则方程\(2(a+1)t^2-2t+(a-1)=0\)有两个不同的正实根,

则其必然满足\(\left\{\begin{array}{l}{\Delta=4-4\times2(a^2-1)>0}\\{-\cfrac{-2}{2\times 2(a+1)}>0}\\{\cfrac{a-1}{2(a+1)}>0}\end{array}\right.\),解得\(\left\{\begin{array}{l}{-\cfrac{\sqrt{6}}{2}<a<\cfrac{\sqrt{6}}{2}}\\{a>1}\\{a<-1或a>1}\end{array}\right.\)

\(1<a<\cfrac{\sqrt{6}}{2}\)。故选\(B\)

例26【2019届高三理科数学三轮用题】已知函数\(f(x)=\cfrac{1}{2}x^2+(a-e)x-aelnx+b\),(其中\(a,b\in R\)\(e\)为自然对数的底数)在\(x=e\)处取得极大值,则实数\(a\)的取值范围是【】

$A.(-\infty,0)$ $B.[0,+\infty)$ $C.[-e,0)$ $D.(-\infty,-e)$

分析:\(f'(x)=x+(a-e)-\cfrac{ae}{x}=\cfrac{x^2+(a-e)x-ae}{x}=\cfrac{(x+a)(x-e)}{x}\)

做出分子函数的简图,由图可知,\(-a>e\),解得\(a<-e\),故选\(D\)

例27【2019届高三理科数学三轮模拟训练题】已知函数\(f(x)=\left\{\begin{array}{l}{x^3,x\leq a}\\{x^2+2x,x>a}\end{array}\right.\),若存在实数\(b\),使得函数\(g(x)=f(x)+b\)有两个零点,则\(a\)的取值范围是【】

$A.(-\infty,-1)\cup(-1,0)\cup(2,+\infty)$
$B.(-\infty,-2)\cup(-1,0)\cup(1,+\infty)$
$C.(-\infty,0)\cup(1,+\infty)$
$D.(-\infty,-1)\cup(2,+\infty)$

法1:分析:本题目需要先做出函数的图像,如下图所示,同时要明白参数\(a\)的作用,

存在实数\(b\),使得函数\(g(x)=f(x)+b\)有两个零点,意味着直线\(y=-b\)与分段函数\(f(x)\)的两段都有交点,

情形一,两段函数都是单调的,此时需要\(a^2+2a<a^3\),解得\(a>2\)或者\(-1<a<0\)

情形二,第二段函数不单调,此时需要\(a<-1\)

综上所述,\(a\in (-\infty,-1)\cup(-1,0)\cup(2,+\infty)\),故选\(A\)

法2:做出分段函数的图像,使用排除法,令\(a=\cfrac{3}{2}\),和\(a=-\cfrac{1}{2}\)验证,可以排除\(B\)\(C\)\(D\),故选\(A\)

解后反思:①将题目中的条件“存在实数\(b\),使得函数\(g(x)=f(x)+b\)有两个零点”更改为函数\(f(x)\)是单调递增的函数,则\(a\)的取值范围为\(\{a\mid a=-1或0\leq a\leq 2\}\)

②将题目中的条件“存在实数\(b\),使得函数\(g(x)=f(x)+b\)有两个零点”更改为函数\(f(x)\)不是单调递增的函数,则\(a\)的取值范围为\(\{a\mid a<-1或-1<a<0或 a>2\}\)

例28【2019届高三理科数学三轮模拟试题】已知函数\(y=a+2lnx\)与函数\(y=x^2+2\)的图像在\(x\in [\cfrac{1}{e},e]\)内有两个交点,则实数\(a\)的取值范围是________.

分析:转化为方程\(a=x^2-2lnx+2\)\(x\in [\cfrac{1}{e},e]\)内有两个根,

即函数\(y=a\)和函数\(y=g(x)=x^2-2lnx+2\)\(x\in [\cfrac{1}{e},e]\)内有两个交点,

\(g'(x)=2x-\cfrac{2}{x}=\cfrac{2(x-1)(x+1)}{x}\),则在\([\cfrac{1}{e},1]\)上单调递减,在\([1,e]\)上单调递增,

\(g(1)=3\)\(g(\cfrac{1}{e})=4+\cfrac{1}{e^2}\)\(g(e)=e^2>4+\cfrac{1}{e^2}\)

做出示意图,可知实数\(a\)的取值范围为\(a\in (3,4+\cfrac{1}{e^2}]\)

例29若\(f(x)=2x^3-ax^2+1(a\in R)\),在\((0,+\infty)\)内有且只有一个零点,则\(f(x)\)\([-1,1]\)上的最大值与最小值的和为______。

分析:方程\(a=\cfrac{2x^3+1}{x^2}=g(x)\)\((0,+\infty)\)内有且只有一解,

即函数\(y=g(x)\)\(y=a\)\((0,+\infty)\)内有且只有一个交点,

用数形结合求得\(a=3\),然后用常规方法求得最值即可。

例30已知函数\(f(x)=\cfrac{1}{2}x+m+\cfrac{3}{2x}-lnx(m\in R)\),若\(x_1\)\(x_2\)是函数\(g(x)=x\cdot f(x)\)的两个极值点,且\(x_1<x_2\),求证:\(x_1x_2<1\)

分析:待解答

例31【2019高三理科数学信息题】已知函数\(f(x)=x^2lnx+1-kx\)存在零点,则\(k\)的取值范围为【】

$A(-\infty,1]$ $B[1,+\infty)$ $C(-\infty,e]$ $D[e,+\infty)$

分析:已知函数\(f(x)=x^2lnx+1-kx\)存在零点,即方程\(f(x)=0\)在定义域\((0,+\infty)\)上有解,

分离参数得到\(k=\cfrac{x^2lnx+1}{x}=xlnx+\cfrac{1}{x}\),令\(h(x)=xlnx+\cfrac{1}{x}\)

则题目转化为\(k=h(x)\)\((0,+\infty)\)上有解,故要么从数的角度求函数\(h(x)\)的值域;要么求其单调性,做函数的图像,从形的角度用数形结合求解。

以下用导数求函数\(h(x)\)的单调性。\(h'(x)=lnx+1-\cfrac{1}{x^2}\)

此时需要注意,导函数中出现了\(lnx\),故我们将上述的函数人为的分为两个部分,\(y=lnx\)\(y=1-\cfrac{1}{x^2}\),先令\(lnx=0\)得到\(x=1\),在将\(x=1\)代入\(y=1-\cfrac{1}{x^2}\)验证也是其零点,说明这两个函数的零点重合,故接下来我们将定义域分为\((0,1)\)\((1,+\infty)\)两部分分类讨论即可:

\(0<x<1\)时,\(h'(x)<0\)\(h(x)\)单调递减,\(x>1\)时,\(h'(x)>0\)\(f(x)\)单调递增,则\(h(x)_{min}=h(1)=1\)

\(h(x)\)的值域为\([1,+\infty)\),故\(k\ge 1\),即\(k\in [1,+\infty)\)。故选\(B\)

或利用单调性得到函数\(h(x)\)的图像如下,

再利用函数\(y=k\)和函数\(y=h(x)\)的图像有交点,得到\(k\)的取值范围为\(k\in [1,+\infty)\)。故选\(B\)


  1. 992978-20190718101817852-1260895810.png

转载于:https://www.cnblogs.com/wanghai0666/p/11172128.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值