直线和圆锥曲线的位置关系

前言

圆锥曲线一般指椭圆、双曲线、抛物线;但由于圆和椭圆有近亲关系,都是封闭曲线,且椭圆的两个焦点合二为一时,椭圆就变成了圆;双曲线和抛物线都是非封闭曲线,这两个和前两个的区别就挺大了。

基础知识

  • 直线\(l\)和圆锥曲线\(C\)的位置关系

1、从几何角度看,直线\(l\)和圆锥曲线\(C\)的位置关系可以分为三类:①无公共点;②仅有一个公共点;③有两个相异的公共点;

2、从数的角度看,可以通过代入法用代数的方法求解判断。通常是将直线\(l\)的方程\(Ax+By+C=0(A^2+B^2\neq 0\),或者说\(A\)\(B\)不同时为\(0\)),代入圆锥曲线\(C\)的方程\(F(x,y)=0\)中,消去\(y\)(或者\(x\))得到一个关于变量\(x\)(或者变量\(y\))的一元方程(仿二次方程),即由\(\left\{\begin{array}{l}{Ax+By+C=0}\\{F(x,y)=0}\end{array}\right.\),消去\(y\)得到\(ax^2+bx+c=0\)

(1)当\(a\neq 0\)时,设一元二次方程\(ax^2+bx+c=0\)的判别式为\(\Delta\),则有

\(\Delta >0\) \(\Leftrightarrow\) 直线\(l\)与圆锥曲线\(C\)相交于不同的两点;

\(\Delta =0\) \(\Leftrightarrow\) 直线\(l\)与圆锥曲线\(C\)相切;

\(\Delta <0\) \(\Leftrightarrow\) 直线\(l\)与圆锥曲线\(C\)相离,无公共点;

(2)当\(a=0\)\(b\neq 0\)时,即得到一个一次方程,则直线\(l\)与圆锥曲线相交,且只有一个交点;此时

\(C\)为双曲线,则直线\(l\)与双曲线\(C\)的渐近线的位置关系是平行;

\(C\)为抛物线,则直线\(l\)与抛物线\(C\)的对称轴的位置关系是平行或者重合;

典例剖析

例1【教材改编】曲线\(x^2+\lambda y^2=1(\lambda\neq 0)\)恒过定点_________。\((\pm 1,0)\)

法1:从数的角度思考分析,类比\(y=kx+1\)恒过定点\((0,1)\)的方法思路,令\(y=0\),得到\(x^2=1\),故上述曲线恒过定点\((\pm 1,0)\);

法2:从形的角度思考分析,变形得到\(\cfrac{x^2}{1}+\cfrac{y^2}{\frac{1}{\lambda}}=1\),用动态的观点思考,当\(\lambda\)变化时,椭圆或者双曲线与\(x\)轴的交点坐标\((-1,0)\)\((1,0)\)始终不变,故曲线恒过定点\((\pm 1,0)\);

例2【教材改编】过点\((4,0)\)的直线交抛物线\(y^2=4x\)\(A\)\(B\)两点,\(O\)为坐标原点,则\(\angle AOB\)的值等于___________。\(\cfrac{\pi}{2}\)

法1:常规方法求解,\(\angle AOB=\cfrac{\pi}{2}\)

法2:特殊化策略思考,当我们将直线由一般的有斜率的情形特殊化为无斜率的情形时,应该没有改变题目中的已知条件,故可以思考用特殊化策略,此时能轻松得到\(\angle AOB=\cfrac{\pi}{2}\)

例3【教材改编】点\(M(x,y)\)在椭圆\(\cfrac{x^2}{5}+y^2=1\)上,则\(x+y\)的取值范围为___________。\([-\sqrt{6},\sqrt{6}]\);

分析:椭圆上任意一点的坐标的参数方程为\((\sqrt{5}cos\theta,sin\theta)\)\(\theta\in [0,2\pi)\)

\(x+y=\sqrt{5}cos\theta+sin\theta=\sqrt{6}sin(\theta+\phi)\),故\(x+y\in [-\sqrt{6},\sqrt{6}]\);

解后反思:椭圆的参数方程的优越性;变量集中;三角函数;求值域中的三角换元;知一求二类[(\(sinx+cosx\)\(sinx-cosx\)\(sinx\cdot cosx\))(奇偶性,周期性,对称性)]

例4【教材改编】直线\(y=kx-k+1\)与椭圆\(\cfrac{x^2}{9}+\cfrac{y^2}{4}=1\)的位置关系为【】

$A.相交$ $B.相切$ $C.相离$ $D.不确定$

法一:从数的角度思考,常规方法,将直线\(y=kx-k+1\)代入椭圆\(\cfrac{x^2}{9}+\cfrac{y^2}{4}=1\)中,[注意运算技巧]

化简整理为\((9k^2+4)x^2+18k(1-k)x+9(1-k^2)=0\)\(\Delta =\cdots=1152k^2+288k+4\times 108>0\)

则直线和椭圆相交,故选\(A\)

法2:从形的角度思考,将直线变形为\(y-1=k(x-1)\),则可知其恒过定点\((1,1)\)

\((1,1)\)代入\(\cfrac{x^2}{9}+\cfrac{y^2}{4}\),得到\(\cfrac{1^2}{9}+\cfrac{1^2}{4}<1\),即点\((1,1)\)在椭圆内,

则直线和椭圆必然相交,故选\(A\)

相关阅读: 1、曲线或函数恒过定点

例5【教材改编】点\(M\)在椭圆\(\cfrac{x^2}{4}+\cfrac{y^2}{3}=1\)\(F_1\)\(F_2\)为其焦点,则\(\angle F_1MF_2\)的最大值为________。

分析:特殊化策略,当点\(M\)位于椭圆的上下顶点位置时,\(\angle F_1MF_2\)最大,最大值为\(\cfrac{\pi}{3}\)

  • 直线与曲线交于一点的误区:

例6【教材改编】过点\((0,1)\)作直线,使它与抛物线\(y^2=4x\)仅有一个公共点,这样的直线有_________条。

分析:如图所示,过点\((0,1)\)做直线,和抛物线仅有一个公共点时,这样的直线有切线和非切线两种情形:

992978-20190729201239371-412764748.png

当为切线时,其一为直线\(x=0\),此时直线无斜率;其二为\(y=kx+1\),设切点为\((x_0,y_0)\),则

\(\left\{\begin{array}{l}{y_0=kx_0+1}\\{y_0^2=4x_0}\\{k=\frac{1}{\sqrt{x_0}}}\end{array}\right.\),解得\(x_0=\cfrac{1}{2}\)\(y_0=\sqrt{2}\)\(k=2(\sqrt{2}-1)\)

故另一条切线为\(y=(2\sqrt{2}-1)x+1\)

当为非切线时,直线为\(y=1\),故这样的直线分别为\(x=0\)\(y=1\)\(y=(2\sqrt{2}-1)x+1\)

例7【教材改编】直线\(y=-\cfrac{3}{2}x+2\)与双曲线\(\cfrac{x^2}{4}-\cfrac{y^2}{9}=1\)有_______个交点;

分析:由于直线和渐近线平行,故只能有一个交点。

例8直线\(y=kx+m\)与椭圆\(\cfrac{x^2}{2}+\cfrac{y^2}{3}=1\)只有一个公共点,则\(k\)\(m\)的关系式为__________。\(m^2=2k^2+3\)

法1:判别式法,利用\(\Delta=0\),得到\(m^2=2k^2+3\)

法2:平行线法。

例2设抛物线\(C:y^2=3x\)的焦点,过\(F\)且倾斜角为\(30^{\circ}\)的直线交\(C\)\(A\)\(B\)两点,则\(|AB|\)等于()

$A.\cfrac{\sqrt{30}}{3}$ $B.6$ $C.12$ $D.7\sqrt{3}$

【法1】:常规方法,利用两点间距离公式,由于\(2p=3\),则\(\cfrac{p}{2}=\cfrac{3}{4}\),故焦点\(F(\cfrac{3}{4},0)\),又斜率为\(k=\cfrac{\sqrt{3}}{3}\)

则直线\(AB\)的方程为\(y=\cfrac{\sqrt{3}}{3}(x-\cfrac{3}{4})\)

联立直线\(AB\)和抛物线方程,得到\(\left\{\begin{array}{l}{y^2=3x}\\{y=\cfrac{\sqrt{3}}{3}(x-\cfrac{3}{4})}\end{array}\right.\)

992978-20171106194108216-1343612812.png

\(y\)得到\(16x^2-24\times7x+9=0\),设点\(A(x_1,y_1)\),点\(B(x_2,y_2)\)

\(x_1+x_2=\cfrac{24\times7}{16}=\cfrac{21}{2}\)\(x_1x_2=\cfrac{9}{16}\)

\(|AB|=\sqrt{1+k^2}\cdot |x_1-x_2|\)

\(=\sqrt{1+k^2}\cdot\sqrt{(x_1+x_2)^2-4x_1x_2}=12\)

【法2】:利用直线\(AB\)的参数方程的参数的几何意义,

直线\(AB\)的参数方程为\(\begin{cases}x=\cfrac{3}{4}+\cfrac{\sqrt{3}}{2}t\\y=0+\cfrac{1}{2}t\end{cases}(t为参数)\),将其代入\(y^2=3x\)中,

整理得到\(t^2-6\sqrt{3}t-9=0\),设\(A\)\(B\)对应的参数分别为\(t_1\)\(t_2\)

\(\Delta>0\),且有\(t_1+t_2=6\sqrt{3}\)\(t_1t_2=-9\)

\(|AB|=|t_1-t_2|=\sqrt{(t_1+t_2)^2-4t_1t_2}=\sqrt{36\times3-4\times(-9)}=12\)

【法3】:利用抛物线的定义可知,\(|AB|=|AF|+|BF|=|AN|+|BO|=x_1+\cfrac{p}{2}+x_2+\cfrac{p}{2}=x_1+x_2+p\)

992978-20171106194108216-1343612812.png

故由法1中,得到\(x_1+x_2=\cfrac{24\times7}{16}=\cfrac{21}{2}\)\(p=\cfrac{3}{2}\),即\(|AB|=x_1+x_2+p=12\)

法4:利用抛物线的焦点弦长公式:\(|AB|=\frac{2p}{sin^2\alpha}\),则\(|AB|=\cfrac{2\times \frac{3}{2}}{(\frac{1}{2})^2}=12\)

转载于:https://www.cnblogs.com/wanghai0666/p/11265541.html

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值