双连不等式

前言

相关概念

形如\(2<2x+1<3\)的不等式,我们就称之为双连不等式。

求解双联不等式的的方法一,利用不等式的性质求解,给双连不等式的左、中、右同时减去\(1\),得到\(1<2x<2\),然后同时除以\(2\),得到\(\cfrac{1}{2}<x<1\);方法二,转化为不等式组求解,如\(\left\{\begin{array}{l}{2<2x+1}\\{2x+1<3.}\end{array}\right.\)

典例剖析

例1【整体思想】解不等式\(0<\cfrac{1+lga}{1-lga}<1\)

法1:原不等式等价于\(\left\{\begin{array}{l}{0<\cfrac{1+lga}{1-lga}①}\\{\cfrac{1+lga}{1-lga}<1②}\end{array}\right.\)

解①\(0<\cfrac{1+lga}{1-lga}\),由穿根法得到\(\cfrac{1+lga}{lga-1}<0\),故\(-1<lga<1\)③,

解②\(\cfrac{1+lga}{1-lga}<1\),变形得到\(\cfrac{2lga}{lga-1}>0\),由穿根法得到\(lga<0\)\(lga>1\)④,

故由③④求交集得到\(-1<lga<0\),解得\(a\in (\cfrac{1}{10},1)\)

法2:看到双连不等式的中间分式部分,若能联想到分式的常用变形,也可以这样求解;

\(0<\cfrac{1+lga}{1-lga}<1\),得到\(0<\cfrac{lga-1+2}{1-lga}<1\),即\(0<-1+\cfrac{2}{1-lga}<1\),故\(1<\cfrac{2}{1-lga}<2\),且能得到\(1-lga>0\)

故利用倒数法则得到\(\cfrac{1}{2}<\cfrac{1-lga}{2}<1\),即\(1<1-lga<2\),即\(-2<lga-1<-1\),即\(-1<lga<0\),解得解得\(a\in (\cfrac{1}{10},1)\),故选\(C\).

例2解不等式\(x<\cfrac{1}{x}<x^2\)

分析:先转化为\(\left\{\begin{array}{l}{x<\cfrac{1}{x}①}\\{\cfrac{1}{x}<x^2②}\end{array}\right.\),再用穿根法分别求解,

解①\(\cfrac{x^2-1}{x}<0\)得到\(x<-1\)\(0<x<1\);解②\(\cfrac{x^3-1}{x}>0\)得到\(x<0\)\(x>1\)

①②求交集得到,解集为\((-\infty,-1)\).

例3【2018江苏南京金陵中学检测】已知当\(0\leqslant x\leqslant 2\)时,不等式\(-1\leqslant tx^2-2x\leqslant 1\)恒成立,则\(t\)的取值范围是____________。

分析:当\(x=0\)时,不等式恒成立,则\(t\in R\);

\(x\neq 0\)时,得到\(\cfrac{2x-1}{x^2}\leqslant t \leqslant \cfrac{2x+1}{x^2}\)\((0,2]\)上恒成立,

\(f(x)=\cfrac{2x-1}{x^2}=-(\cfrac{1}{x}-1)^2+1\),最大值为\(1\),则有\(t\geqslant 1\)

\(g(x)=\cfrac{2x+1}{x^2}=(\cfrac{1}{x}+1)^2-1\),最小值为\(\cfrac{5}{4}\),则有\(t\leqslant \cfrac{5}{4}\)

综上可知,\(t\)的取值范围为\([1,\cfrac{5}{4}]\);

转载于:https://www.cnblogs.com/wanghai0666/p/11332530.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值