2020届校级月考【1】

例1【2020届凤翔中学高三理科月考一第10题】已知函数\(y=f(x)\)是定义在\(R\)上的奇函数,且满足\(f(x+2)\)\(+f(x)=0\),当\(x\in [-2,0]\)时,\(f(x)=-x^2-2x\),则当\(x\in [4,6]\)时,\(y=f(x)\)的最小值为【】

$A.-8$ $B.-1$ $C.0$ $D.1$

分析:本题目的本质是求解函数\(f(x)\)的解析式;属于利用函数的多个性质求解函数的解析式;

[法1]:由于\(f(x+2)+f(x)=0\),即\(f(x+2)=-f(x)\),故\(T=4\),又\(y=f(x)\)\(R\)上的奇函数,

故可以先利用奇偶性求得\(x\in [0,2]\)上的解析式;

\(x\in [0,2]\)时,\(f(x)=-f(-x)=-[-(-x)^2-2\times (-x)]=x^2-2x\)

再利用周期性求得\(x\in [4,6]\)上的解析式;

\(x\in [4,6]\)时,\(x-4\in [0,2]\)\(f(x)=f(x-4)=(x-4)^2-2\times (x-4)=x^2-10x+24\)

接下来求解\(x\in [4,6]\)时函数\(f(x)=x^2-10x+24\)的最小值;

\(f(x)=(x-5)^2-1\)\(x\in [4,6]\),故\(f(x)_{min}=f(5)=-1\);故选\(B\);

[法2]:当求得\(x\in [0,2]\)时,\(f(x)=-f(-x)=-[-(-x)^2-2\times (-x)]=x^2-2x\)

由于函数的周期为\(4\),故函数\(f(x)\)\(x\in [0,2]\)段上的值域和\(x\in [4,6]\)段上的值域相同,

故只需要求解\(x\in [0,2]\)时,\(f(x)=x^2-2x\)的最小值即可,\(f(x)=(x-1)^2-1\)

\(f(x)_{min}=f(1)=-1\),故\(x\in [4,6]\)上的最小值也是\(-1\),故选\(B\);

[法3]:如果对函数的性质的数的表达形式比较熟悉,还可以这样求解如下:

由于周期为\(T=4\),故有\(f(x+4)=f(x)\),又由于函数为奇函数,故\(f(x)=-f(-x)\)

则得到\(f(x+4)=-f(-x)\),这个表达式刻画的是函数的对称性,关于点\((2,0)\)成中心对称;

\(x\in [0,2]\),则此时\(f(-x)\)可解,且\(f(x+4)\)即表达函数在\(x\in [4,6]\)上的解析式;

\(f(x+4)=-f(-x)=-[[-(-x)^2-2\times (-x)]]=x^2-2x\)\(x\in [0,2]\)

直接求\(y=x^2-2x\)\(x\in [0,2]\)上的最小值即可,同上可知此时\(y_{min}=y_{|x=1}=-1\)

故所求的最小值为\(-1\),故选\(B\)

其实做个代换,即能得到\(x\in [4,6]\)上的解析式;分析如下,

由于\(f(x+4)=x^2-2x\)\(x\in [0,2]\),令\(x+4=t\),则\(t\in [4,6]\),则\(x\in t-4\)

\(f(t)=(t-4)^2-2(t-4)=t^2-10t+24\),即\(f(x)=x^2-10x+24\)\(x\in [4,6]\)

例1【2020届凤翔中学高三理科月考一第12题】已知\(f'(x)\)\(f(x)\)的导函数,且对任意的实数\(x\)都满足\(f'(x)=\)\(e^x(2x+3)\)\(+f(x)\)\(f(0)=1\),则不等式\(f(x)<5e^x\)的解集为【】

$A.(-4,1)$ $B.(-1,4)$ $C.(-\infty,-4)\cup (1,+\infty)$ $D.(-\infty,-1)\cup (4,+\infty)$

分析:将已知等式\(f'(x)=\)\(e^x(2x+3)\)\(+f(x)\)变形为\(\cfrac{f'(x)-f(x)}{e^x}=2x+3\)

\(g(x)=\cfrac{f(x)}{e^x}\),则\(g'(x)=\cfrac{f'(x)-f(x)}{e^x}\),则\(g'(x)=2x+3\)

\(g(x)=x^2+3x+C\),又由于\(f(0)=1\),则\(g(0)=\cfrac{f(0)}{e^0}=1\),则可知\(C=1\)

\(g(x)=x^2+3x+1\),而不等式\(f(x)<5e^x\)\(g(x)<5\),故\(x^2+3x+1<5\)

得到\(x^2+3x-4<0\),解得\(-4<x<1\),故选\(A\).

例1【2020届凤翔中学高三理科月考一第14题】已知函数\(f(x)=\left\{\begin{array}{l}{1+log_2(2-x),x<1}\\{2^{x-1},x\geqslant 1,}\end{array}\right.\)
\(f(-2)+f(log_212)\)=_______________.

分析:由题目可知,\(f(-2)=1+log_2[2-(-2)]=1+2=3\);又由于\(log_212>1\)

\(f(log_212)=2^{log_212-1}=2^{log_212}\times 2^{-1}=12\times \cfrac{1}{2}=6\)

\(f(-2)+f(log_212)=9\)

例1【2020届凤翔中学高三理科月考一第16题】已知函数\(f(x)=\left\{\begin{array}{l}{|log_2x|,0<x<2}\\{sin(\frac{\pi}{4})x,2\leqslant x\leqslant 10,}\end{array}\right.\)

若存在实数\(x_1,\) \(x_2,\)\(x_3,\) \(x_4\),满足\(x_1\)\(<x_2\)\(<x_3\)\(<x_4\),且\(f(x_1)=f(x_2)=f(x_3)=f(x_4)\),则\(\cfrac{x_3+x_4}{x_1x_2}\)的值为_____________。

分析:做出示意图如下所示,

由图可知,\(x_1\in (0,1)\)\(x_2\in (1,2)\),又由\(f(x_1)=f(x_2)\),即\(|log_2x_1|=|log_2x_2|\)

\(-log_2x_1=log_2x_2\),即\(log_2x_1+log_2x_2=0\),则\(log_2x_1x_2=0\),即\(x_1x_2=1\)

又第二段函数图像关于直线\(x=6\)对称,即\(x_3,x_4\)关于直线\(x=6\)对称,

故有\(x_3+x_4=2\times 6=12\);故\(\cfrac{x_3+x_4}{x_1x_2}=12\)

转载于:https://www.cnblogs.com/wanghai0666/p/11577013.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值