辗转相除法

辗转相除法是用于求两个数的最大公约数的方法。

      首先解释下什么是最大公约数(相信很多人都清楚了):若整数a能被整数k(k≠0)整除,则称k为a的约数。如果k既是a的约数,又是b的约数,则k称为a和b的公约数。a和b可以有多个公约数,其中最大的一个公约数称为最大公约数

 

辗转相除法的步骤是:

(1) 用两个数中的大数除以小数,得到余数。

       (2) 以(1)中的小数替换(1)中的大数,以(1)中的余数替换(1)中的小数,返回(1)

直到当小数为0,这时的大数即为最大公约数。

 

证明:

clip_image001
欲证 clip_image002
先设

  • clip_image003
  • clip_image004

clip_image005 可得clip_image006且知clip_image007
表示d是b,r的公因数,但clip_image004[1]
所以clip_image008


clip_image009
可得clip_image010且知clip_image011
表示e是a,b的公因数,但clip_image003[1]
所以clip_image012


clip_image013可得知
clip_image014

 

代码实现:

// 求最大公约数
public   class  GcdTest{
    
// 递归
     public   static   int  gcd( int  a,  int  b) {
        
if ( b  ==   0 ) {
            
return  a;
        } 
else  {
            
return  gcd(b, a  %  b);
        }
    }

    
// 迭代    
     public   static   int  gcd2( int  a,  int  b) {
        
int  r;
        
while ( b  !=   0 ) {
            r 
=  a  %  b;
            a 
=  b;
            b 
=  r;
        }
        
return  a;
    }
    
    
public   static   void  main(String[] args){
        
int  res;
        res 
=  gcd( 32 , 4 );
        System.out.println(res);
        res 
=  gcd2( 24 , 16 );
        System.out.println(res);
    }
}

 

参考:

维基百科

转载于:https://www.cnblogs.com/icescut/archive/2009/09/20/Euclidean.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值