codeforces 1156F Card Bag 概率dp

Card Bag

状态只会从a小转移到a大,随便dp就好了。

#include<bits/stdc++.h>
using namespace std;

const int N = 5000 + 7;
const int mod = 998244353;

int n, a[N], sum[N], dp[N][N], sum_dp[N];
int inv[N];

int main() {
    inv[1] = 1;
    for(int i = 2; i < N; i++) {
        inv[i] = 1LL * (mod - mod / i) * inv[mod % i] % mod;
    }
    scanf("%d", &n);
    for(int i = 1; i <= n; i++) {
        int x; scanf("%d", &x);
        a[x]++;
    }
    for(int i = 1; i < N; i++) {
        sum[i] = sum[i - 1] + a[i];
    }
    dp[0][0] = 1;
    for(int j = 1; j <= n; j++) {
        sum_dp[0] = dp[0][j - 1];
        for(int i = 1; i < N; i++) {
            sum_dp[i] = (sum_dp[i - 1] + dp[i][j - 1]) % mod;
        }
        for(int i = 1; i < N; i++) {
            dp[i][j] = 1LL * sum_dp[i - 1] * inv[n - j + 1] % mod * a[i] % mod;
        }
    }
    int ans = 0;
    for(int i = 1; i < N; i++) {
        if(a[i] < 2) continue;
        for(int j = 1; j < n; j++) {
            ans += 1LL * (a[i] - 1) * inv[n - j] % mod * dp[i][j] % mod;
            if(ans >= mod) ans -= mod;
        }
    }
    printf("%d\n", ans);
    return 0;
}

/*
*/

 

转载于:https://www.cnblogs.com/CJLHY/p/11615265.html

引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值