Codeforces 1090C New Year Presents

New Year Presents

用set模拟一下。。 写的bug有点多。

#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PII pair<int, int>
using namespace std;

const int N = (int)1e5 + 7;

int n, m, sum, min_cnt, tar[N], num[N], vis[N];
bool ban[N], gg[N];
vector<int> V[N], P[N], T[N];
set<int> S;
vector<pair<PII, int>> ans;

int main() {
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i++) {
        int s; scanf("%d", &s);
        num[i] = s;
        sum += s;
        while(s--) {
            int x; scanf("%d", &x);
            V[i].push_back(x);
        }
    }

    min_cnt = sum / n;
    int need = sum % n;

    for(int i = 1; i <= n && need; i++) {
        if(num[i] >= min_cnt + 1) {
            gg[i] = true;
            need--;
        }
    }

    for(int i = 1; i <= n; i++) {
        if(num[i] > min_cnt) {
            tar[i] = gg[i] ? min_cnt + 1 : min_cnt;
            if(num[i] > tar[i]) {
                for(auto &t : V[i]) {
                    P[t].push_back(i);
                }
            }
        }
        else if(num[i] < min_cnt || need && num[i] == min_cnt) {
            if(need) tar[i] = min_cnt + 1, need--;
            else tar[i] = min_cnt;
            for(auto &t : V[i]) {
                T[t].push_back(i);
            }
            S.insert(i);
        }
    }

    for(int i = 1; i <= m; i++) {
        for(auto &id : T[i]) {
            vis[id] = i;
        }
        int pt = 0;
        while(pt < P[i].size() && ban[P[i][pt]]) pt++;
        vector<int> del;
        for(auto &id : S) {
            if(pt >= P[i].size()) break;
            if(vis[id] == i) continue;
            ans.push_back(mk(mk(P[i][pt], id), i));
            num[P[i][pt]]--;
            if(num[P[i][pt]] == tar[P[i][pt]]) {
                ban[P[i][pt]] = true;
            }
            num[id]++;
            if(num[id] == tar[id]) {
                del.push_back(id);
            }
            pt++;
            while(pt < P[i].size() && ban[P[i][pt]]) pt++;
        }
        for(auto &id : del) S.erase(id);
    }

    printf("%d\n", (int)ans.size());
    for(auto &t : ans) {
        printf("%d %d %d\n", t.fi.fi, t.fi.se, t.se);
    }
    return 0;
}

/*
*/

 

转载于:https://www.cnblogs.com/CJLHY/p/11616098.html

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值