设 $0<x_0<1,x_{n+1}=\sin x_n(n=1,2,\cdots)$, 求证$\lim\limits_{n\rightarrow \infty}\sqrt{n}x_n=\sqrt{3}...

一学生问我一道题:设 \(0<x_0<1,x_{n+1}=\sin x_n(n=1,2,\cdots)\), 求证\(\lim\limits_{n\rightarrow \infty}\sqrt{n}x_n=\sqrt{3}\).
下面证明主要有我教研室王艳秋副教授提供。
证明:1、先证明\(\lim\limits_{n\rightarrow \infty}x_n=0\).
因为当 \(0<x_0<1\)时,\(x_{n+1}=\sin x_n<x_n(n=1,2,\cdots)\), 故\(x_n\) 单调递减,且有下界0,故当\(n\rightarrow \infty\)时,\(\{x_n\}\) 极限存在。
\(\lim\limits_{n\rightarrow \infty} x_n = a\), 则有\(\lim\limits_{n\rightarrow \infty} x_{n+1} = a\),由\(\sin x\) 的连续性,对等式\(x_{n+1}=\sin x_n\)
两边取极限 \(a =\sin a\), 所以 \(a = 0\).

2、再证明 \(\lim\limits_{n\rightarrow \infty}[\dfrac{1}{x_{n+1}^2}-\dfrac{1}{x_{n}^2}] = \dfrac{1}{3}.\)
因为 \(x_{n+1}^2 = (\sin x_n)^2 = \left(x_n-\dfrac{x_n^3}{6}+o(x_n^3)\right)^2\),
\[\dfrac{1}{x_{n+1}^2}-\dfrac{1}{x_{n}^2} = \dfrac{1}{(x_n-\dfrac{x_n^3}{6}+o(x_n^3))^2}-\dfrac{1}{x_{n}^2}\]
\[=\dfrac{x_n^2-(x_n-\dfrac{x_n^3}{6}+o(x_n^3))^2}{x_n^2(x_n-\dfrac{x_n^3}{6}+o(x_n^3))^2},\]
由等价无穷小,\(\sin x\sim x,x\rightarrow 0\), 得\(\sin x_n\sim x_n,n\rightarrow \infty\), 忽略高阶无穷小,可得
\[\lim\limits_{n\rightarrow \infty}[\dfrac{1}{x_{n+1}^2}-\dfrac{1}{x_{n}^2}]=\lim\limits_{n\rightarrow \infty}\dfrac{x_n^4/3}{x_n^4}=\dfrac{1}{3}.\]

3、由Stolz 定理,若数列 \(\{b_n\}\) 极限存在, 且 \(\lim\limits_{n\rightarrow \infty} b_n = b\) ,则 \(\lim\limits_{n\rightarrow \infty}\dfrac{b_1+b_2+\cdots+b_n}{n}=b\).
\(b_n = \dfrac{1}{x_{n}^2}-\dfrac{1}{x_{n-1}^2},n=1,2,\cdots.\), 则 \(b_1+b_2+\cdots+b_n = \dfrac{1}{x_{n}^2}-\dfrac{1}{x_{0}^2}\), 故
\[\lim\limits_{n\rightarrow \infty}\dfrac{b_1+b_2+\cdots+b_n}{n}= \lim\limits_{n\rightarrow \infty}\dfrac{ \dfrac{1}{x_{n}^2}-\dfrac{1}{x_{0}^2}}{n}=b=\dfrac{1}{3}.\]
\[\lim\limits_{n\rightarrow \infty}\dfrac{ \dfrac{1}{x_{n}^2}}{n}=b=\dfrac{1}{3},\]
亦即 \[\lim\limits_{n\rightarrow \infty}\sqrt{n}x_n=\sqrt{3}.\]

转载于:https://www.cnblogs.com/cidpmath/p/6015524.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值