首先,在实数范围内,显然当
n
n
n为偶数时,
x
=
±
1
x=\pm1
x=±1;当
n
n
n为奇数时,
x
=
1
x=1
x=1
接下来,讨论
x
x
x在复数范围内的情况。
x
=
r
e
i
θ
x=re^{i\theta}
x=reiθ
这个结论是显然的,可以通过公式
e
i
θ
=
i
sin
θ
+
cos
θ
e^{i\theta}=i\sin\theta+\cos\theta
eiθ=isinθ+cosθ得到
当然,
x
x
x的的极坐标为
(
r
,
θ
)
(r,\theta)
(r,θ)
把这个式子直接带入方程,可以得到
r
n
e
i
n
θ
=
1
  
⟹
  
e
i
n
θ
=
r
−
n
r^ne^{in\theta}=1\implies e^{in\theta}=r^{-n}
rneinθ=1⟹einθ=r−n
代入
e
i
θ
=
i
sin
θ
+
cos
θ
e^{i\theta}=i\sin\theta+\cos\theta
eiθ=isinθ+cosθ,得到
i
sin
n
θ
+
cos
n
θ
=
r
−
n
i\sin n\theta+\cos n\theta=r^{-n}
isinnθ+cosnθ=r−n
由于
r
r
r是非负实数,所以
sin
n
θ
=
0..
.
(
1
)
\sin n\theta=0...^{(1)}
sinnθ=0...(1),
cos
n
θ
=
r
−
n
.
.
.
(
2
)
\cos n\theta=r^{-n}...^{(2)}
cosnθ=r−n...(2)
由
(
2
)
(2)
(2)式得,
θ
=
k
π
\theta=k\pi
θ=kπ,代入
(
2
)
(2)
(2)得到,
r
−
n
=
±
1
r^{-n}=\pm1
r−n=±1
因为
r
r
r是非负数,所以
r
−
n
≥
0
r^{-n}\ge0
r−n≥0,所以
r
−
n
=
1
r^{-n}=1
r−n=1,所以
cos
n
θ
=
1
\cos n\theta=1
cosnθ=1,所以
n
θ
=
2
k
π
  
⟹
  
θ
=
2
k
π
n
n\theta=2k\pi\implies\theta=\frac{2k\pi}{n}
nθ=2kπ⟹θ=n2kπ
因为
(
r
,
θ
)
(r,\theta)
(r,θ)和
(
r
,
θ
+
2
π
)
(r,\theta+2\pi)
(r,θ+2π)是一个点,所以
k
=
0
,
1
,
.
.
.
,
n
−
1
k=0,1,...,n-1
k=0,1,...,n−1,而这个方程一定有
n
n
n个解,所以这是方程的全部解,即
x
=
e
2
i
k
n
π
(
k
=
0
,
1
,
.
.
.
,
n
−
1
)
x=e^{2i\frac{k}{n}\pi}(k=0,1,...,n-1)
x=e2inkπ(k=0,1,...,n−1)
在坐标系中表现为单位圆的包含
1
1
1的
n
n
n等分点