当火车处在换基站的临界点时,它到某两基站的距离相等。因此换基站的位置一定在某两个基站的中垂线上,
我们预处理出任意两基站之间的中垂线,对于每次询问,求询问线段与所有中垂线的交点。
检验这些交点是否满足条件(详见代码),如果满足,那么它是一个交换点。
#include <cstdio> #include <cmath> #include <vector> #include <algorithm> using namespace std; const int MAXN = 60; const double eps = 1e-7; struct Point { double x, y; Point( double x = 0, double y = 0 ):x(x), y(y) { } }; typedef Point Vector; struct Line { Point s; Vector v; Line( Point s = Point(), Point v = Point() ): s(s), v(v) { } }; int dcmp( double x ) //控制精度 { if ( fabs(x) < eps ) return 0; else return x < 0 ? -1 : 1; } Vector operator+( Vector A, Vector B ) //向量加 { return Vector( A.x + B.x, A.y + B.y ); } Vector operator-( Vector A, Vector B ) //向量减 { return Vector( A.x - B.x, A.y - B.y ); } Vector operator*( Vector A, double p ) //向量数乘 { return Vector( A.x * p, A.y * p ); } Vector operator/( Vector A, double p ) //向量数除 { return Vector( A.x / p, A.y / p ); } bool operator<( const Point& A, const Point& B ) //两点比较 { return dcmp( A.x - B.x ) < 0 || ( dcmp( A.x - B.x ) == 0 && dcmp( A.y - B.y ) < 0 ); } bool operator==( const Point& a, const Point& b ) //两点相等 { return dcmp( a.x - b.x ) == 0 && dcmp( a.y - b.y ) == 0; } double Dot( Vector A, Vector B ) //向量点乘 { return A.x * B.x + A.y * B.y; } double Length( Vector A ) //向量模 { return sqrt( Dot( A, A ) ); } double Angle( Vector A, Vector B ) //向量夹角 { return acos( Dot(A, B) / Length(A) / Length(B) ); } double Cross( Vector A, Vector B ) //向量叉积 { return A.x * B.y - A.y * B.x; } double Area2( Point A, Point B, Point C ) //向量有向面积 { return Cross( B - A, C - A ); } Vector Rotate( Vector A, double rad ) //向量旋转 { return Vector( A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad) ); } Vector Normal( Vector A ) //向量单位法向量 { double L = Length(A); return Vector( -A.y / L, A.x / L ); } Point GetLineIntersection( Point P, Vector v, Point Q, Vector w ) //两直线交点 { Vector u = P - Q; double t = Cross( w, u ) / Cross( v, w ); return P + v * t; } double DistanceToLine( Point P, Point A, Point B ) //点到直线的距离 { Vector v1 = B - A, v2 = P - A; return fabs( Cross( v1, v2 ) ) / Length(v1); } double DistanceToSegment( Point P, Point A, Point B ) //点到线段的距离 { if ( A == B ) return Length( P - A ); Vector v1 = B - A, v2 = P - A, v3 = P - B; if ( dcmp( Dot(v1, v2) ) < 0 ) return Length(v2); else if ( dcmp( Dot(v1, v3) ) > 0 ) return Length(v3); else return fabs( Cross( v1, v2 ) ) / Length(v1); } Point GetLineProjection( Point P, Point A, Point B ) // 点在直线上的投影 { Vector v = B - A; return A + v*( Dot(v, P - A) / Dot( v, v ) ); } bool SegmentProperIntersection( Point a1, Point a2, Point b1, Point b2 ) //线段相交,交点不在端点 { double c1 = Cross( a2 - a1, b1 - a1 ), c2 = Cross( a2 - a1, b2 - a1 ), c3 = Cross( b2 - b1, a1 - b1 ), c4 = Cross( b2 - b1, a2 - b1 ); return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; } bool OnSegment( Point p, Point a1, Point a2 ) //点在线段上,不包含端点 { return dcmp( Cross(a1 - p, a2 - p) ) == 0 && dcmp( Dot( a1 - p, a2 - p ) ) < 0; } /****************以上模板******************/ int N, M; Point city[MAXN]; //城市 Point GSM[MAXN]; //基站 Line L[MAXN][MAXN]; //点[i][j]之间的中垂线 void init() { for ( int i = 1; i <= M; ++i ) for ( int j = i + 1; j <= M; ++j ) { Point mid = Point( (GSM[i].x+GSM[j].x)/2.0, (GSM[i].y+GSM[j].y)/2.0 ); L[i][j] = Line( mid, Normal( GSM[j] - GSM[i] ) ); L[j][i] = L[i][j]; } return; } //判断交点是否在线段上 bool check( Point st, Point ed, Point cp ) { return ( st < cp || st == cp ) && ( cp < ed || cp == ed ); } //假设我在此交点交换基站 //那么交点到形成 该中垂线的线段的其中一端点 的距离 L 应该是最小的 //判断是否有点到交点的距离小于L,如果有,则不是在这一点交换的基站 bool check2( double limit, Point jiao ) { for ( int i = 1; i <= M; ++i ) { double dis = Length( GSM[i] - jiao ); if ( dcmp( dis - limit ) < 0 ) return false; } return true; } int main() { //freopen( "in.txt", "r", stdin ); //freopen( "s.txt", "w", stdout ); while ( ~scanf( "%d%d", &N, &M ) ) { for ( int i = 1; i <= N; ++i ) scanf( "%lf%lf", &city[i].x, &city[i].y ); for ( int i = 1; i <= M; ++i ) scanf( "%lf%lf", &GSM[i].x, &GSM[i].y ); init(); //初始化所有中垂线 int Q; scanf( "%d", &Q ); while ( Q-- ) { int a, b; scanf( "%d%d", &a, &b ); if ( a > b ) swap( a, b ); Line train = Line( city[a], city[b] - city[a] ); //火车行进路线 int huan = 0; //换基站次数 for ( int i = 1; i <= M; ++i ) for ( int j = i + 1; j <= M; ++j ) { if ( dcmp( Cross( train.v, L[i][j].v ) ) == 0 ) //如果中垂线与火车行进路线平行 continue; Point tmp = GetLineIntersection( train.s, train.v, L[i][j].s, L[i][j].v ); //求交点//交点到形成中垂线的线段的其中一个端点的距离 double limit = Length( GSM[i] - tmp ); Point st = city[a], ed = city[b]; if ( ed < st ) swap( st, ed ); if ( check( st, ed, tmp ) ) //如果在线段上 { if ( check2( limit, tmp ) ) //如果确实在这点交换基站 ++huan; } } printf( "%d\n", huan ); } } return 0; }