1.概述
为什么要写这系列文章?
商业数据分析的根本目的就是要洞察数据背后的规律,基于此,企业可以制订决策、并采取相应措施和行动,进而达成想要的结果。这是商业数据分析的最大价值所在。
那么如何才能洞察数据背后的规律,以给企业的决策提供支撑呢?
著名的咨询公司Gartner于2013年总结、归纳、提炼出一套数据分析的框架,个人认为可以很好地回答上述问题,特此分享给大家。
如上图所示,Gartner把数据分析分为四个层次,分别是:
- 描述性分析(Descriptive Analysis)
- 诊断性分析(Diagnostic Analysis)
- 预测性分析(Predictive Analysis)
- 处方性分析(Prescriptive Analysis)
1.2 数据分析的四个层次介绍
下面对这四个层次的分析方法分别进行介绍
(1)描述性分析-发生了什么?
故名思义,该层次主要是对已经发生的事实用数据做出准确的描述。比如某企业本月订单签约额比上月增加100万,至1100万,但是订单履约率从上月的98%下降到了95%,库存周转率从上月的0.8下降到了0.7。
(2)诊断性分析-为什么会发生?
知道到底发生了什么,对我们的帮助不大,更重要的是,我们要明白为什么发生。比如经过分析,发现上文提到的订单履约率下降的原因是成品生产不出来,无法完成交付。而成品生成不出来的原因则是部分原材料的供应商未能按时送货,导致原材料不齐套,无法开始生产。
(3)预测性分析-什么可能会发生?
基于上述两个层次的分析,我们发现了其中的规律,即原材料供应商的送货及时率会影响成品订单的履约率。假如上月某原材料供应商A送货及时率只有70%,通过建模,我们可以预测本月该供应商会使我们的订单履约率下降2%。
(4)处方性分析-该做些什么?
有了预测性分析的结果后,我们无需再做事后诸葛亮,而可以运筹帷幄,在事前就采取措施。上例中,供应商A会导致本月我们的订单履约率下降,我们可能采取的措施就是把A换掉,但是现在有B和C两个供应商供我们选择,该选择哪个呢?通过分析和计算得出:选用供应商B会比选C的订单履约率高1%,因此建议选择供应商B。这就是处方性分析。
1.3 总结
从上文可以看出,该数据分析的框架逻辑非常清晰,四个层次层层递进,经过这四个层次的分析以后,可以对企业的决策和行动提供有力支撑。
本篇文章是这个系列的开篇,主要说明该数据分析框架每一个层次具体是什么,他们之间的关系如何。后面的文章将会对每一个层次的工具和方法进行详细介绍,解决如何做的问题,下一篇文章将聚焦于描述性分析。
2. 描述性分析(Descriptive Analysis)
2.1方法
2.1.1 了解业务场景
如果想通过数据发现和回答『发生了什么』的问题,第一步并不是急急忙忙的直接去分析数据,而是首先要了解和还原数据产生的业务场景,包括:数据涉及到的部门和岗位有哪些,这些部门和岗位之间的业务流程是怎么样的,在不同业务流程中有哪些输入,对数据做了什么处理,又是如何输出和传递给下游部门的。如果不了解业务场景就去做数据分析,就如同盲人摸象,因此这一步至关重要。
2.1.2 探索性分析
探索性分析又细分为以下三个步骤:
(1)提问,理顺初步分析思路和目标
在了解清楚数据产生的业务场景后,可试着问自己一些what happened的问题。比如,本月销售额是多少?环比和同比变化分别是多少?本财年销售的变化趋势是怎么样的?通过相应问题,可以理顺初步的分析思路和分析目标。另外,在上一步了解业务背景的时候,也要注意和相关业务的关键干系人沟通,获取他们想知道的what happened的问题有哪些。
需要注意的是,这里说的是初步的分析思路和目标,因为在随后做分析的时候,新的灵感可能会被不断激发,分析的思路和目标也在不断调整,这是一个循环往复的过程。
(2)收集数据
有了初步的分析思路和目标以后,就可以确定需要收集哪些数据了。比如上文提到的销售额分析可能用到的数据为销售订单数据、销售开票数据。
(3)选择相应分析方法
根据分析的思路和目标,就可以对收集到的数据选择相应的分析方法了。具体的方法包括:
对数据位置的探索,包括:最大值、最小值、均值、中位数、分位数等
对数据分布的探索,包括:偏差、方差、标准差、茎叶图、直方图、箱形图(也叫盒须图)、密度图等
对数据趋势的探索,包括:同比、环比、趋势图、条形图等
对数据聚合的探索,包括:排序、筛选、计数、重复项、分组、求和、比例、条形图、饼图等
2.1.3 提炼指标
对数据做探索性分析后,可对数据反映的事实有一个直观的感受,比如,通过分析一个仓库的月度收发存数据,可以大概知道这个仓库的货物周转情况。但是要想更准确、简洁地描述发生了什么,还应该提出更高的要求:即总结和提炼出相应指标。比如描述库存周转的整体情况,库存周转率、库存周转天数等指标更有效。这些指标可以做为企业日常经营管理的KPI,让相关人员快速、准确地了解到企业当前的经营情况。
2.2 工具
2.2.1 个人使用
描述性分析中最常用的工具就是Excel,但是随着商业环境中产生数据的增多,Excel的运行效率变得相对低下,并且Excel主要侧重于表格中的数字分析,但是因为人类对图形的敏感度和理解力天生就比数字高,正所谓一图胜千言,因此近年来可视化分析工具逐渐流行起来,此类工具主要是通过图形去对数据产生洞见,发现其中的规律,而不仅仅是用做结果的展示。Tableau就是其中的佼佼者。其上手比较容易,很多功能设计的也比较便捷和人性化,运行效率较高(10万行以上的数据Tableau较Excel有明显优势),输出的可视化图表也很美观,可直接用在数据分析报告里(Excel默认输出的图表都很丑,后期还需要做不少调整和美化,才能放到数据分析报告里)
Tableau是商业软件,不过提供免费版本Tableau Public使用,但是此版本存在诸多限制。大家可用邮箱免费注册旁听Coursera上的这门课程:《使用 Tableau 展示可视化数据》,注册以后会收到有效期半年的Tableau Desktop的序列号。
2.2.2 企业使用
对企业来说,描述性分析的工具主要是报表和BI。
报表一般是嵌入至各专业系统中,如CRM、SRM、ERP、WMS、MES等。
BI一般是单独的系统,其从各专业系统中抽取数据,经过处理后,通过表格或图形展示出来。Gartner 2017年企业级BI系统的魔力象限如下图所示,大家可以看到Tableau也是这一市场的领导者(产品为Tableau Server、Tableau Online、Tableau Mobile),Tableau之所以能超越一众传统强大的BI产品(如Oracle的BIEE,IBM的Cognos,SAP的BO)成为市场的领导者,主要原因是,商业智能分析平台市场的主流已经从IT部门主导的静态展示分析转向业务部门主导的动态探索分析,这样才能激发员工的主动性和创造力。
在报表和BI的基础之上,可增加预警系统,如对异常的指标进行邮件或微信预警,让领导仅对这些指标进行关注,而无需把所有的指标都看一遍,以节省时间,提高效率,有必要时再查看相应报表或BI展示,这也是企业描述性分析的应用方式之一。
本篇向大家简要介绍了描述性分析的方法和工具,涉及到的知识主要是统计学的内容,这部分知识需要大家自行找相关书籍进行补充阅读,下一篇将向大家介绍诊断性分析和预测性分析。
3.诊断性分析(Diagnostic Analysis)& 预测性分析 (Predictive Analysis)
上一篇文章向大家介绍了描述性分析的方法和工具,基于此,可以明确到底发生了什么,但是更重要的是明确为什么发生以及未来会发生什么,这就是诊断性分析(Diagnostic Analysis)和预测性分析(Predictive Analysis)的作用。
在诊断性分析中,首先需要知道和结果可能相关的因素(在数据分析里,这些因素被称为特征)有哪些,这个过程一方面依赖于我们对业务的了解程度,另外也要多和业务人员进行头脑风暴,只要是可能相关的,都纳入考虑,也可以基于现有特征构造新特征,至于是否相关可在后面的分析中进行验证。
比如和汽车油耗可能相关的特征包括:车重、排量、轴距、变速箱类型(手动、自动)、驱动方式(两驱、四驱)等。
3.2.相关性分析(Correlation Analysis)
列出和结果可能相关的特征后,下一步就是要验证这些特征和结果到底是否相关。具体方法包括:
3.2.1 定性分析
(1)二维散点图
若分析的仅是一个特征与结果的相关性,则可以通过画二者的二维散点图进行分析,通过图形描述,可以初步且直观判断二者的存在何种相关关系:正相关、负相关、无关;如果相关的话,是线性相关还是非线性相关(抛物线、指数等)。下图为不同性别年龄与身高关系的散点图,可以看出在青少年时期,这二者是呈线性正相关的。
(2)矩阵散点图
在现实中,仅有一个特征与结果相关的情况是少之又少的,大部分情况都是存在多个与结果相关的特征,此时需要矩阵散点图进行分析。矩阵散点图样式如下:
其实质就是针对每一个特征与结果分别做二维散点图,以分析其相关性。当然,在矩阵散点图上也可分析特征与特征之间是否有相关性,专业上称呼为多重共线性,多元线性回归要求模型中的特征数据不能存在有多重共线性,否则模型的可信度将大打折扣,此时需要排除部分特征消除共线性才能建模。
3.2.2 定量分析
上述的散点图分析仅能通过图形看出特征与结果的大致关系,即定性分析;但是无法对它们的关系做精确性描述,即定量分析;定量分析主要分为如下两个步骤:
3.2.2.1 特征选择
当我们列出可能和结果有关的多个特征,并通过散点图获得大致的直观认知后,还需要更精确的判断到底哪个特征与结果的相关性更高,为了降低计算的复杂度,我们应该只把那些最相关或者最重要的特征放到模型中,主要的方法有两种:
单变量特征选择方法:常用的手段有计算皮尔逊系数(即相关系数)和互信息系数,相关系数只能衡量线性相关性而互信息系数能够很好地度量各种相关性,但是计算相对复杂一些,不过很多toolkit里边都包含了这个工具(如sklearn的MINE),得到相关性之后就可以排序选择特征了;
基于模型的特征选择方法:部分模型本身在训练过程中就会对特征进行排序,如逻辑回归、决策树、随机森林等;
特征选择不仅有助于简化计算,还可以帮助我们对特征与结果的关系有更好的理解。
3.2.2.2 模型建立
(1)回归(Regression)
若结果为连续值,则应用的模型为回归模型,包括:
a. 一元线性回归(Linear Regression)
若仅有一个特征与结果相关,并且其是呈线性关系的,则可以进行一元线性回归,即建立回归模型y=a+bx计算出截距a和斜率b,x为特征(自变量),y为结果(因变量);
b. 多元线性回归
上文中已经提到,在现实生活中,仅单个特征与结果相关的情况是不多见的,大多数都是多特征共同作用导致的结果。若通过矩阵散点图判断,各特征无多重共线性,且与结果呈线性关系,则可以进行多元线性回归分析,建立回归模型y=a+b1x1+b2x2+...+bnxn;
c. 非线性回归(Non-Linear Regression)
如果回归模型的因变量是自变量的一次以上函数形式,回归规律在图形上表现为形态各异的各种曲线,称为非线性回归。常见的非线性回归模型包括:双曲线模型、幂函数模型、指数函数模型、对数函数模型、多项式模型等;
那么如何获得上述的回归模型呢?常用的回归算法包括:最小二乘法、支持向量机(SVM)、GBRT、神经网络等。
(2)分类(Classification)
若结果为离散值,则应用的模型为分类模型。比如人的年收入、日平均运动时间、日平均睡眠时间与人的寿命的相关关系是回归模型;而人的年收入、日平均运动时间、日平均睡眠时间与人健康与否(健康或者不健康)的相关关系则是分类模型。
常用的分类算法包括:决策树、逻辑回归、随机森林、朴素贝叶斯等。
3.2.2.3 监督式学习(Supervised Learning)
上述回归模型和分类模型均是机器学习的监督式学习模型,它主要指通过学习历史的真实数据,找到其中的规律(即模型),并假设「历史总是惊人的相似」「太阳底下没有新鲜事」,通过找到的模型对未来进行预测。这一种学习方式相当于既包括了诊断性分析,也包括了预测性分析。但是,通过历史数据找到真正的规律是比较难的。在现实生活中大家应该都有这种感觉,回顾过去好像清清楚楚,但是展望未来时又是一片迷茫。这是因为实践和未来才是检验规律的唯一标准,但是在未来还没有发生的情况下,检验只能依靠历史的数据,这样非常容易出现机器学习中常说的过拟合和欠拟合的问题。如何评估机器学习模型的效果,避免过拟合和欠拟合的问题,找到那个真正的规律,业界提出了很多的方法,限于篇幅的原因,只能在其他文章中下回分解了。
3.3 因果性分析
诊断性分析的隐含意思就是,要找到事物的因果关系,即因果性分析。所谓因果性,假设X是因,Y是果,则只要X出现,必然会导致Y的发生,其是百分之百的概率。
虽然我们在上文中介绍了相关性分析,但是需要特别注意的是,相关性分析并不等同于因果性分析,相关性分析可达不到百分之百的概率。比如,虽然收入与个人的健康有很大的关系,因为收入高的人可以享受更好的物质和医疗,但是并不意味着有钱人就一定健康,现在有钱人英年早逝的新闻经常见诸报端,因此我们只能说收入与健康是呈相关性,而非因果性。关于看似相关但是其实一点关系也没有的例子大家可以参见这个网页:http://www.tylervigen.com/spurious-correlations
但是,在现实世界中,很多事务的因果性是很难被证实的,因为其追求的是百分之百的概率,一点差错、一个反例都不能出。「吸烟有害健康」这句话听了很多年,现在听起来貌似这两者之间存在因果性,但是其实它们也是相关性,只不过是强相关性。因为要证明所有吸烟的人健康都受到了影响,这件事是很难的。
所以,回过头来,做诊断性分析时,我们依然要从相关性分析出发,并结合相关领域的知识,通过逻辑推理,对分析的结果进行合理解释。因此,在使用机器学习的模型时,也要注意其可解释性。
另外,在大数据时代,我们看问题和分析问题时,也要转换自己的思路,从以往的寻找确定的因果性改为寻找强相关性。
最后,这里要特别推荐著名计算机科学家吴军博士所著的《智能时代》,对本节内容解释的更精彩,推荐大家阅读。
4.处方式分析(Prescriptive Analysis)
4.1 什么是处方式分析?
本系列前面三篇文章分别向大家介绍了描述性分析、诊断性分析和预测性分析,这三种分析方式有点像就医时的检查和诊断阶段,在此阶段确定病因之后,可以预估出病情可能的发展方向,而处方式分析,就是要根据前面的分析结果开具相应处方,到底是该吃药,还是该输液,甚至是做手术。商业领域中的处方式分析与此类似,只是其给出的是相应商业问题的解决方案和行动建议(这也是处方式分析区别于其他三种分析方式最主要的特征)。处方式分析回答的问题是:为了解决这个问题,我们该做些什么?或者说,为了达到某个目标,我们该朝哪个方向努力?
4.2 如何进行处方式分析?
那么如何通过处方式分析给出相应问题的解决方案和行动建议呢?
首先,还是要进行描述性分析。通过描述性分析明确现状和问题,及业务人员和管理人员的需求,这样才能做到有的放矢。
其次,进行诊断性分析,寻找和当前问题相关的特征,并对其进行建模。
上述两个步骤在前面的文章中已经做了详细介绍。
最后,根据不同的业务场景和需求,给出具体的解决方案和行动建议。具体方法又分为以下三种:
(1)预测性分析
有一些情况,仅仅使用诊断性分析和预测性分析的模型,即可以给出建议,比如银行可根据申请人的基本信息,包括学历、收入、是否有车、是否有住房、存款金额、是否有违约记录等,去建立模型预测其信用违约的风险有多大,进而给出建议是否要给这个申请人发放信用卡,如果要发放,信用卡的额度又该是多少。
(2)仿真(Simulation)
仿真就是通过建模模拟真实世界的系统或流程,并通过不同的输入参数或条件查看其对结果的影响,据此制订相应决策。仿真在各行各业已经有广泛的应用,比如军事上初级的沙盘推演、中级的电脑模拟对抗、高级的实战演习,都是仿真。再比如飞机设计时初级的软件CFD(计算流体力学)仿真、中级的风洞实验、高级的试飞,也是仿真。当然,越高级的仿真付出的成本就越高,所以在商业环境中,主要是通过在电脑上做数学建模仿真,进而根据仿真结果给出相应的解决方案和行动建议。比如企业的成本支出和客户服务水平是一个两难问题,往往成本的削减意味着客户服务水平的下降,那如果说企业要制订年度成本削减目标,通过仿真发现成本降低5%,但是客户服务水平仅下降1%,属于可接受范围,但是当成本降低10%时,客户服务水平下降达6%,可能对公司的经营、商誉等产生重大影响,则此时成本降低5%是相对合适的,而10%就不是那么合适了。
(3)最优化( Optimization)
最优化是应用数学的一个分支,主要指在一定限制条件下,选取某种研究方案使目标达到最优的一种方法。最优化问题在当今的军事、工程、管理、商业等领域有着极其广泛的应用。比如,企业都希望利润尽量高,那如何在现实的约束条件下,达到上述目标就是一个普遍的最优化问题。最优化常用的方法为线性规划、非线性规划、凸优化、整数规划、网络流优化(物流、电网、通讯网络应用)等。
4.3 处方式分析的其他特点
医生开出相应处方后,都会告诉病人按期进行诊后复查,目的就是检验处方的效果,如果处方收效甚微,则需要尽快调整方向,确定新的处方。因此处方式分析除了会给出行动建议外,另一大特点就是需要有一个反馈系统可以收集采取相应行动后的结果数据,以验证行动建议的有效性,若效果不佳,则需要调整,给出新的可行性建议,这个过程会不断循环迭代,直至达到预期目标。一个优秀的处方式数据分析系统,迭代过程应该是无须人工干预、智能自动完成的,这也是目前机器学习和人工智能方法的最大优势。
处方式分析是数据分析方法的最高阶形态,也是在商业环境中对企业最有用、产生价值最大的方法,因此希望大家未来不管是在做数据分析时,还是在设计数据产品时,都能以此为目标,我们一起共勉。
下一篇文章将以一个完整的例子,向大家介绍这四种分析方法的综合运用。
前面已经通过四篇文章详细介绍了商业数据分析的四个层次,本篇将通过一个示例将这四个层次串联起来。
5.1 背景
PAS是一家销售企业管理软件的公司,虽然整个行业欣欣向荣,但是这家公司的业务却陷入泥沼,销售额连续八个季度出现下滑。为了扭转此局面,PAS花重金招聘了过往销售业绩极为出色的老李担任CSO(Chief Sales Officer),直接向CEO汇报。
上任伊始,老李为了摸清情况,召集销售、产品、售前、人事、市场部门一起开了一个沟通会议,没想到这个会议变成了吐槽大会。
销售部门报怨人事部门给的候选人素质不高,经验太少。人事反击说是你们管理不善,有经验的老员工频繁离职,新入职的员工培训不够,不能快速成长。销售又抱怨公司产品功能不完善,在市场上的竞争力不足。而产品则回怼,已上线项目的客户反应良好,是你们销售能力不行。还有销售抱怨售前顾问不给力或者支持力度不够,还说市场部门组织的活动效果太差,获得的销售线索太少等等,不一而足。
在思路不畅、需要灵感时,老李喜欢到星巴克坐坐。在公司附近的星巴克,老李看到一个年青人正在写商业计划书,于是找这个年青人攀谈起来。原来这个青年叫小白,毕业于斯坦福。小白学成归来打算回国创立自己的商业数据分析公司,并且向老李介绍了数据分析在商业决策中的作用和案例,尤其是描述性分析、诊断性分析、预测性分析和处方式分析这四个层次和所用的具体方法。听完之后,老李觉得或许在PAS的事情上小白可以提供帮助,于是向小白介绍了自己面临的困境,并希望接下来在改造销售团队和提升销售业绩的过程中小白能通过数据分析的方法提供有力支撑,当然他也想考校下小白,看他说的数据分析方法是不是有那么神奇。公司还没创立就接到了第一单生意,遇到这种好事小白欣然答应。
5.2 描述性分析
在进入PAS公司后,小白先对公司的业务现状和数据情况做了初步调研。PAS公司上线了CRM、ERP、HR等系统,针对商机、合同、付款、客户、价格、销售员的入职时间、接受过的培训等信息都是有详细记录的,这就为后续的数据分析工作打下了坚实的基础。
在做描述性分析时,最重要的是结构化思维,即要把分析的问题或指标进行逐层结构化分解,直到无法分解为止。
比如,总体销售收入=销售漏斗中所有销售机会的数量 * 每个销售机会的交易金额 * 胜率
而每个销售机会的交易金额=每个销售机会包含的产品 * 每个产品包含的模块数量 * 每个模块的平均单价;
根据上述思路,小白首先对去年销售员整体的业绩情况做了分析:总体销售指标为 1亿2000万,已签单 1个亿,指标达成了83%,目前有100个销售员,平均每个销售员的签单金额为100万,这样看起来貌似还不错。但是再看下一项数据就会发现比较大的问题,仅有20%的销售员完成了销售指标。
通过查看去年销售员签单金额分布,这个问题体现的更明显。销售业绩主要是靠几个明星销售员来达成的。
再看去年整体销售漏斗的表现,整体销售漏斗金额高达5亿,而每个销售员平均的漏斗金额有500万,但是平均签单金额仅有100万,也就是说胜率仅为20%;另外,去年已完结的交易数量为1000,而销售员平均完成交易数量仅为10个,数量偏少;同样,平均的交易金额仅为10万,平均客户价值仅为20万,在企业管理软件行业,这两个数字都是偏小的。
接着分析新老客户平均交易金额及胜率,可以看出新客户虽然单子大,但是赢单的概率较低;反之,老客户虽然单子小,但是胜率很高。
经过初步的描述性分析,小白对现有CRM、ERP、HR、售后、市场等5大系统或数据源中的数据做了梳理,共137个变量或KPI。如此之多的变量想通过传统的数据分析方法分析是很困难的(如通过散点图分析这些变量与销售业绩的相关性),只能使用机器学习的技术;通过此项技术,可计算出不同变量(机器学习称为特征)对结果值(即销售业绩)的影响到底有多大;具体结果如下:
根据上图把销售业绩分为三类:平庸,中等和优秀;
其中平庸为业绩完成不到50%的;中等为业绩完成50%-99%的;优秀为业绩完成100%的;
下图可以看到优秀组和平庸组在这12个关键KPI的差异:
可以看到,对业绩影响最大的变量为销售员销售的产品种类:业绩优秀的销售员,是所有产品都销售的;而业绩平庸的销售员,则只销售自己熟悉的产品;
其次,业绩优秀的销售员,和合作伙伴的关系很紧密,销售线索可能来自于合作伙伴,甚至合同都是与合作伙伴联合与客户签订;而业绩平庸的销售员,只依赖于公司内部市场部提供的销售线索;
第三重要的是平均合同金额。业绩优秀的销售员合同金额是平庸的销售员的2倍多;而较大的合同金额通常是因为每个合同销售的产品更多;
第四重要的是销售漏斗金额与销售指标的比率。业绩优秀的销售员会在全年保持稳定的销售机会创造率,其每月创造的销售漏斗金额是平庸销售员的3倍;
5.4 预测性分析
再细致分析不同销售人员这12个变量表现:
通过上图可以看出,尺有所短,寸有所长。比如,85号销售员看起来大部分变量都处于平均水平或之下,但是其也有闪光点,这些人里只有他每季度创造的销售机会超过平均水平,那其他人就可以向他学习如何提升这一点。
上图虽然可看出不同销售员在单个变量的表现,但是很难据此直接判断出其未来是否能完成业绩指标。如果可以做到这点,就可以把可能不达标的人提前找出来,进而给予其必要的帮助。这里就需要用到预测性分析,通过建立预测性模型,根据其关键KPI的表现情况,即可以预测其业绩达标情况。小白根据历史数据训练出的预测模型,预测的准确率已经达到了95%。
5.5 处方式分析
预测模型完成后,即开始发挥作用。根据模型预测,刚入职一年的销售员小王很难完成今年的业绩指标。虽然其很努力,每月创造的销售机会比均值高不少,销售漏斗金额与销售指标的比率也OK,但是在部分关键指标表现不佳:
另外,看起来他不怎么和合作伙伴一起合作,公司平均60%的合同是和合作伙伴一起打单打下来的,而他的比率是0;而有合作伙伴参与的订单金额是没有合作伙伴参与的订单金额的6倍,胜率也更高。
因此,小王的直属主管找他沟通后,建议他着重提升合同的金额,并给出了以下改进措施:
首先,主管给到小王负责区域的合作伙伴名单,以及以往公司与每个伙伴签署的平均金额,小王需要更积极地联系合作伙伴。
其次,建议小王要提升捆绑销售软件的数量,公司平均有40%的软件都是捆绑销售出去的。主管给了小王捆绑销售占比较高的产品清单,以及在与合作伙伴和捆绑销售做的好的同事名单,要求小王找他们多沟通,看他们是如何做到的。
5.6 尾声
经过一年的时间,PAS公司的业绩得到了明显的提升:
至此,本系列文章就完结了,希望能帮助大家通过该系列了解数据分析在商业决策中的作用,并能在实际的商业决策中有意识的使用数据分析方法提升决策的效率和质量
参考文档:
商业数据分析的四个层次(二) 描述性分析(Descriptive Analysis)
商业数据分析的四个层次(三) 诊断性分析(Diagnostic Analysis)& 预测性分析 (Predictive Analysis)
商业数据分析的四个层次(四) 处方式分析(Prescriptive Analysis)