[JSOI2011]分特产

Discription
JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。
JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任
何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。
例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的
分配方法:
A:麻花,B:麻花、包子
A:麻花、麻花,B:包子
A:包子,B:麻花、麻花
A:麻花、包子,B:麻花
 

 

Input
输入数据第一行是同学的数量N 和特产的数量M。
第二行包含M 个整数,表示每一种特产的数量。
N, M 不超过1000,每一种特产的数量不超过1000
 

 

Output
输出一行,不同分配方案的总数。由于输出结果可能非常巨大,你只需要输出最终结果
MOD 1,000,000,007 的数值就可以了。
 

 

Sample Input
5
4 1 3 3 5

Sample Output

384835

 

Hint

 

挺简单的一道组合数学,,,可重集组合水一水就过了23333。

设 g(i) 为 至少有 i个人一个特产都没有得的方案数, 那么 g(i) = C(n,i) * πC(n-i-1+a[j] , a[j]) ,就是考虑哪些人没有选,已经选了的人选的方案。

再设 f(i) 为 有i个人一个特产没得的方案数,可以发现的是 一个 f(i) 会在 一个 g(j) 里被算 C(i,j) 次,所以我们就构造一个容斥系数,

使得 对于我们需要的 i ,Σ x[j] * C(i,j)  = 1 ; 而对于其他的 i ,Σ x[j] * C(i,j) = 0。

本题我们需要的仅仅是 f[0],所以这个系数很好构造,令所有奇数的j的x为-1,偶数的为1就行了,正好这也是我们常见的容斥系数,所以不会构造也能水过本题吧233

 

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int ha=1000000007;
const int maxn=2005;
using namespace std;
int C[maxn][maxn];
int n,m,a[maxn];
int g[maxn];

inline int add(int x,int y){
	x+=y;
	return x>=ha?x-ha:x;
}

inline void init(){
	C[0][0]=1;
	for(int i=1;i<=2000;i++){
		C[i][0]=1;
		for(int j=1;j<=i;j++) C[i][j]=add(C[i-1][j-1],C[i-1][j]);
	}
}

inline void solve(){
	for(int i=0,lef;i<=n;i++){
		g[i]=C[n][i],lef=n-i-1;
	    for(int j=1;j<=m;j++) g[i]=g[i]*(ll)C[a[j]+lef][a[j]]%ha;
	}
	
	int ans=0;
	for(int i=0;i<=n;i++){
		if(i&1) ans=add(ans,ha-g[i]);
		else ans=add(ans,g[i]);
	}
	
	printf("%d\n",ans);
}

int main(){
	init();
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++) scanf("%d",a+i);
	solve();
	return 0;
}

  

 

转载于:https://www.cnblogs.com/JYYHH/p/8548381.html

根据引用[1],dp[u][j]表示在u子树中选取恰好j个人时能获得的最大价值。而根据引用,该问题的时间复杂度为O(log2​104×nm)。 对于洛谷P2143 [JSOI2010] 巨额奖金问题,我们可以使用动态规划来解决。具体步骤如下: 1. 首先,我们需要构建一棵树来表示员工之间的关系。树的根节点表示公司的总经理,其他节点表示员工。每个节点都有一个权值,表示该员工的奖金金额。 2. 接下来,我们可以使用动态规划来计算每个节点的dp值。对于每个节点u,我们可以考虑两情况: - 如果选择节点u,则dp[u][j] = dp[v][j-1] + value[u],其中v是u的子节点,value[u]表示节点u的奖金金额。 - 如果不选择节点u,则dp[u][j] = max(dp[v][j]),其中v是u的子节点。 3. 最后,我们可以通过遍历树的所有节点,计算出dp[u][j]的最大值,即为所求的巨额奖金。 下面是一个示例代码,演示了如何使用动态规划来解决洛谷P2143 [JSOI2010] 巨额奖金问题: ```python # 构建树的数据结构 class Node: def __init__(self, value): self.value = value self.children = [] # 动态规划求解最大奖金 def max_bonus(root, j): dp = [[0] * (j+1) for _ in range(len(root)+1)] def dfs(node): if not node: return for child in node.children: dfs(child) for k in range(j, 0, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-1] + node.value) for child in node.children: for k in range(j, 0, -1): for l in range(k-1, -1, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-l-1] + dp[child.value][l]) dfs(root) return dp[root.value][j] # 构建树 root = Node(1) root.children.append(Node(2)) root.children.append(Node(3)) root.children[0].children.append(Node(4)) root.children[0].children.append(Node(5)) root.children[1].children.append(Node(6)) # 求解最大奖金 j = 3 max_bonus_value = max_bonus(root, j) print("最大奖金为:", max_bonus_value) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值