多项式辗转相除法求最大公约数_点灯游戏、方格填数与 Chebyshev 多项式(续)...

本文深入探讨Chebyshev多项式的性质及其在求解多项式最大公约数中的应用。通过引理和定理,阐述了Chebyshev多项式的递推关系、基解的概念以及在有限域中的行为。文章还介绍了如何构造基解的简便方法,并展示了如何在不同域中求解方程的解空间。最后,通过可视化展示了有限域中解空间的形态,揭示了数学的美学魅力。
摘要由CSDN通过智能技术生成

c774c8a4544fb3ed946b4e2051a47b83.png

本文是上一篇文章的续集。

预告:上篇文章说过的基解可视化在本文末尾,不想看中间推导过程的可以直接拉到最底下看图。个人觉得这些图都相当地优美,大概这就是数学的魅力吧。

Chebyshev 多项式的性质

回忆 Chebyshev 多项式的定义:

以上递推式的形式类似于 Fibonacci 数列,事实上 Chebyshev 多项式也有一些类似于 Fibonacci 数列的性质。

引理18 若补充定义

(这样上述递推式对
也成立),则对任意非负整数
都有:

1)

2)

3)

4)

5)若

,则

证明:

1)对

归纳,容易验证
时等式成立。假设
时等式成立,则由

从而

时等式也成立。

2)可用归纳法证明,或者直接由

重复以上步骤得到

3)若

的公因式,则由(1)立即可得
整除
;反过来,若
的公因式,由(1)可得
整除
,结合
可以推出
整除
。以上说明
的公因式集合与
的公因式集合相同,因此二者最大公因式也相等。

4)由(3)直接用辗转相除可得

,再结合
以及
是首一多项式可得结论。

的特殊情况,通常规定
(无论
作为整数还是作为多项式都是如此),等式显然还是成立的。

5)由(4)立即可得。

定义19 对任意非零多项式

,若存在正整数
使得
,则称满足该条件的最小正整数
深度,记为
。若不存在这样的正整数
,记

由引理 18 的(4)和(5)立即可得:

推论20 对任意非负整数

当且仅当

这里我们约定

不整除任何正整数。

基解的“基解”

回忆上一篇文章最终得到的定理:

定理17 若多项式

的最大公因式
在域
上可以分解为

其中

上互不相同的不可约首一多项式,
,记

则方程(1)有一组基解

其中

在其分裂域中的所有根;并且方程(1)的解空间维数等于
的次数。

注意到式子

只与
以及多项式
在其分裂域中的所有根
有关,换句话说式子
的取值只由参数
以及多项式
决定,因此我们改记

定理中对

的全部约束条件为:
的不可约因子,
是不超过
分解式中次数的任意正整数。这个条件刚好等价于
。综上所述,可以将定理 17 改写为更加简练的形式:

定理17' 对任意

,方程(1)有一组基解

其中

各自取遍所有不可约多项式和所有正整数,满足条件

(注意上述定理中将

偷换成了
,这是因为二者要么相等要么差一个 -1 倍,可以相互替换,因此换成
确保是首一多项式)

利用

当且仅当
,再根据推论 20 又可将上述表述改写为

定理17'' 对任意

,方程(1)有一组基解

其中

各自取遍所有不可约多项式和所有正整数,满足条件

(别忘了我们约定

不整除任何正整数,如果深度为
说明这组解为空集)

现在我们换一个角度看这些基解,不把它们按照

分组,而是把它们按照
是否相同来分组,定理又可再次重新叙述为

定理17''' 对任意

,不可约多项式
,以及正整数
,记

,则称
列的矩阵

标准基。对任意

,将所有大小为
的标准基组合起来就是方程(1)的一组基解。

若固定

值,经过试验容易发现:
相同的一族标准基有非常明显的模式。例如取

取不同的

就可以得到不同的标准基。为了能直观地看到这些解,我们用白色和黑色表示
的两个元素 0 和 1,将这些解转化为黑白方格图。分别取
,得到的标准基如下图所示:

cb88c4ffe1f71eab5a06f4d504d5e648.png

规律很明显:

的两个标准基就是由
的两个标准基
通过若干次镜像翻转操作(上下和左右都翻转,每次翻转都在中间填充一排 0)得到的。实际上这条规律并不准确,当域的特征不为 2 时,每次翻转还要进行 反色操作,即将
替换为
,只不过在特征为 2 的域中将
替换为
等于不变而已。下面是域
的一个例子,仍然取
,其中白色、灰色、黑色分别表示 0, 1, 2,可以看到每次镜像翻转都附带一次反色操作。

318787a7128f09fa50dc83ad5111b8d5.png

不妨将这种操作简称为镜像反色操作,容易看出镜像反色操作不仅适用于标准基,事实上任何

的解都可以通过镜像反色操作得到
的解
(直接运代入原始方程就能验证)。

回头看定理 17''',既然已经找到规律,我们只需证标准基

的确可由标准解
通过镜像反色操作得到,这不算很困难。

引理21

是不可约多项式,
是正整数,满足
,记
在分裂域中所有根为
,则有:

(1)对任意

(2)对任意

证明:

(1)将

在分裂域中完全分解,其中有因子
且其次数大于等于
,在上一篇文章的定理 13 中已经证明了

(2)利用

的递推式(见上一篇文章)用归纳法易证,这里
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值