matlab求零空间,【线性代数】矩阵的零空间

矩阵A的零空间就Ax=0的解的集合。

零空间的求法:对矩阵A进行消元求得主变量和自由变量;给自由变量赋值得到特解;对特解进行线性组合得到零空间。

假设矩阵如下:

87828168_1

对矩阵A进行高斯消元得到上三角矩阵U,继续化简得到最简矩阵R:

87828168_2

由于方程Ax=0的右侧是零向量,所以只对矩阵A进行消元不会影响解,因此不需要增广矩阵,所以有:

87828168_3

从上面的高斯消元的结果可以看出,矩阵A的秩为2,其中第1,3列为主元列,2,4列为自由列,对应于方程主来说,形式转变如下:

87828168_4

从上式可以看出,x2,x4是自由变量,我们可以随意赋值,x2=0,x4=1;x2=1,x4=0可以分别得到两个特解(几个自由变量就有几个特解):

87828168_5

然后我们将两组特解进行线性组合就得到了矩阵A的零空间:

87828168_6

上面我们从数值解的角度描述了矩阵零空间的求法,下面从公式角度分析:

上面我们经过消元(行变换,不改变行空间和零空间,只改变列空间)得到了最简形式R。我们将R经过列变换得到如下矩阵:

87828168_7

我们可以对方程式作如下变形:

87828168_8

87828168_9

我们之所以进行上述变换,是为了有更好的表示形式(不进行列变换也行,但是要记住哪一列是单位矩阵I中的,哪一列是自由变量矩阵F中的):

87828168_7

87828168_10

这样我们代入方程式可以得到零空间矩阵:

87828168_11

从上面的推导可以看出,得到的零空间矩阵的每一列就是我们前面的特解(注意要变换顺序!交换第2,3行,结果便和前面相同)。因此,我们可以从通过消元法得到最简式R,然后就可以直接得到零空间矩阵,则零空间就是零空间矩阵各列向量的线性组合,而不需要像前面那样先给x2,x4赋值,然后回代到方程中得到两个特解,从而得到矩阵的零空间。

下面再举一例:

87828168_12

由于R本来就具有很好的形式,就不用进行列变换了:

87828168_13

于是通过解方程得到零空间矩阵:

87828168_14

注:最简矩阵R和零空间矩阵x在MATLAB中可以分别用命令rref(A),null(A,'r')得到

作者:nineheadedbird

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值