DP专题之概率DP

注意:在概率DP中求期望要逆着推,求概率要正着推


概率DP求期望:

链接: http://acm.hdu.edu.cn/showproblem.php?pid=4405


dp[ i ]表示从i点走到n点的期望,在正常情况下i点可以到走到i+1,i+2,i+3,i+4,i+5,i+6 点且每个点的概率都为1/6

所以dp[i]=(dp[i+1]+dp[i+2]+dp[i+3]+dp[i+4]+dp[i+5]+dp[i+6])/6  + 1(步数加一)

而对于有跳跃的点直接为dp[a]=dp[b];

</pre><pre code_snippet_id="436469" snippet_file_name="blog_20140727_1_1601949" name="code" class="cpp">
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=100000+10;
double dp[maxn];
int vist[maxn];
int main()
{
    int n,m;
    while(cin>>n>>m)
    {
        if(n==0&&m==0)
        break;
        memset(vist,-1,sizeof(vist));
        memset(dp,0.0,sizeof(dp));
        int a,b;
        while(m--)
        {
            cin>>a>>b;
            vist[a]=b;
        }
        for(int i=n-1;i>=0;i--)
        {
            if(vist[i]!=-1)   dp[i]=dp[vist[i]];
            else
            {
                dp[i]=(dp[i+1]+dp[i+2]+dp[i+3]+dp[i+4]+dp[i+5]+dp[i+6])/6.0+1;
            }
        }
        printf("%.4lf\n",dp[0]);
    }
    return 0;
}



直接推到公式求期望:

 链接:http://acm.hdu.edu.cn/showproblem.php?pid=3853

题目大意

有一个人被困在一个 R*C(2<=R,C<=1000) 的迷宫中,起初他在 (1,1) 这个点,迷宫的出口是 (R,C)。在迷宫的每一个格子中,他能花费 2 个魔法值开启传送通道。假设他在 (x,y) 这个格子中,开启传送通道之后,有 p_lift[i][j] 的概率被送到 (x,y+1),有 p_down[i][j] 的概率被送到 (x+1,y),有 p_loop[i][j] 的概率被送到 (x,y)。问他到出口需要花费的魔法值的期望是多少。

做法分析

令:f[i][j] 表示从 (i,j) 这个点到出口 (R,C) 花费的魔法值的期望。

那么,我们有:

    f[i][j] = p_loop[i][j]*f[i][j] + p_left[i][j]*f[i][j+1] + p_down[i][j]*f[i+1][j]

移项可得:

    (1-p_loop[i][j])*f[i][j] = p_left[i][j](f[i][j+1] + p_down[i][j]*f[i+1][j]

于是我们可以倒着递推了

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=1000+10;
double dp[maxn][maxn];
typedef struct Mat
{
    double a,b,c;
};
Mat p[maxn][maxn];
int main()
{
    int r,c;
    while(scanf("%d%d",&r,&c)!=EOF)
    {
        if(r==0&&c==0)  break;
        for(int i=0;i<r;i++)
            for(int j=0;j<c;j++)
            scanf("%lf%lf%lf",&p[i][j].a,&p[i][j].b,&p[i][j].c);
        memset(dp,0.0,sizeof(dp));
        for(int i=r-1;i>=0;i--)
            for(int j=c-1;j>=0;j--)
        {
            if(i==r-1&&j==c-1)   continue;
            if(1-p[i][j].a==0)   continue;
            dp[i][j]=(1+dp[i][j+1]*p[i][j].b+dp[i+1][j]*p[i][j].c)/(1.0-p[i][j].a);
        }
        printf("%.3lf\n",2*dp[0][0]);
    }
    return 0;
}


直接推倒公式求期望

链接:http://poj.org/problem?id=2096

  1. dp求期望的题。 
  2.     题意:一个软件有s个子系统,会产生n种bug。 
  3.     某人一天发现一个bug,这个bug属于某种bug,发生在某个子系统中。 
  4.     求找到所有的n种bug,且每个子系统都找到bug,这样所要的天数的期望。 
  5.     需要注意的是:bug的数量是无穷大的,所以发现一个bug,出现在某个子系统的概率是1/s, 
  6.     属于某种类型的概率是1/n。 
  7.     解法: 
  8.     dp[i][j]表示已经找到i种bug,并存在于j个子系统中,要达到目标状态的天数的期望。 
  9.     显然,dp[n][s]=0,因为已经达到目标了。而dp[0][0]就是我们要求的答案。 
  10.     dp[i][j]状态可以转化成以下四种: 
  11.         dp[i][j]    发现一个bug属于已经找到的i种bug和j个子系统中 
  12.         dp[i+1][j]  发现一个bug属于新的一种bug,但属于已经找到的j种子系统 
  13.         dp[i][j+1]  发现一个bug属于已经找到的i种bug,但属于新的子系统 
  14.         dp[i+1][j+1]发现一个bug属于新的一种bug和新的一个子系统 
  15.     以上四种的概率分别为: 
  16.     p1 =     i*j / (n*s) 
  17.     p2 = (n-i)*j / (n*s) 
  18.     p3 = i*(s-j) / (n*s) 
  19.     p4 = (n-i)*(s-j) / (n*s) 
  20.     又有:期望可以分解成多个子期望的加权和,权为子期望发生的概率,即 E(aA+bB+...) = aE(A) + bE(B) +... 
  21.     所以: 
  22.     dp[i,j] = p1*dp[i,j] + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] + 1; 
  23.     整理得: 
  24.     dp[i,j] = ( 1 + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] )/( 1-p1 ) 
  25.             = ( n*s + (n-i)*j*dp[i+1,j] + i*(s-j)*dp[i,j+1] + (n-i)*(s-j)*dp[i+1,j+1] )/( n*s - i*j ) 

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=1000+10;
double dp[maxn][maxn];
int main()
{
    int n,s;
    cin>>n>>s;
    dp[n][s]=0.0;
    for(int i=n;i>=0;i--)
        for(int j=s;j>=0;j--)
    {
        if(i==n&&j==s)   continue;
        dp[i][j]=(n*s+(n-i)*j*dp[i+1][j]+i*(s-j)*dp[i][j+1]+(s-j)*(n-i)*dp[i+1][j+1])/(n*s-i*j);
    }
    printf("%.4lf\n",dp[0][0]);
    return 0;
}

先求概率在通过概率从求期望类型

链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2422

题解:《算法竞赛入门经典训练指南》141~142

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn=110;
double dp[maxn][maxn];
int main()
{
    int t;
    scanf("%d",&t);
    for(int cas=1;cas<=t;cas++)
    {
        int a,b,n;
        scanf("%d/%d%d",&a,&b,&n);
        double p=(double)a/b;
        memset(dp,0.0,sizeof(dp));
        dp[0][0]=1.0;
        dp[0][1]=0.0;
        for(int i=1;i<=n;i++)
            for(int j=0;b*j<=a*i;j++)
        {
            dp[i][j]=dp[i-1][j]*(1-p);
            if(j)  dp[i][j]+=dp[i-1][j-1]*p;
        }
        double Q=0.0;
        for(int i=0;b*i<=a*n;i++)
            Q+=dp[n][i];
        printf("Case #%d: %d\n",cas,(int)(1/Q));
    }
    return 0;
}


转载于:https://www.cnblogs.com/wolf940509/p/6617115.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
期望dp概率dp是两种不同的动态规划方法。 期望dp是指通过计算每个状态的期望值来求解最终的期望。在期望dp中,我们通常定义dp\[i\]表示在第i个状态时的期望值,然后通过状态转移方程来更新dp数组,最终得到最终状态的期望值。期望dp通常用于求解期望问题,例如求解骰子的期望点数、求解抽奖的期望次数等。 概率dp是指通过计算每个状态的概率来求解最终的概率。在概率dp中,我们通常定义dp\[i\]表示在第i个状态时的概率,然后通过状态转移方程来更新dp数组,最终得到最终状态的概率概率dp通常用于求解概率问题,例如求解抛硬币出现正面的概率、求解从一副牌中抽到红心的概率等。 总结来说,期望dp概率dp的区别在于它们所计算的是不同的值,期望dp计算的是期望值,而概率dp计算的是概率值。 #### 引用[.reference_title] - *1* [概率/期望dp专题](https://blog.csdn.net/qq_34416123/article/details/126585094)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [【动态规划】数学期望/概率DP/期望DP详解](https://blog.csdn.net/weixin_45697774/article/details/104274160)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值