hdu5407CRB and Candies (逆元+数学公式)

Problem Description
CRB has  N different candies. He is going to eat  K candies.
He wonders how many combinations he can select.
Can you answer his question for all  K(0 ≤  K ≤  N)?
CRB is too hungry to check all of your answers one by one, so he only asks least common multiple(LCM) of all answers.
 

Input
There are multiple test cases. The first line of input contains an integer  T, indicating the number of test cases. For each test case there is one line containing a single integer  N.
1 ≤  T ≤ 300
1 ≤  N ≤  106
 

Output
For each test case, output a single integer – LCM modulo 1000000007( 109+7).
 

Sample Input
 
  
5 1 2 3 4 5
 

Sample Output
 
  
1 2 3 12 10

题意:求LCM(C(n,0),C(n,1),C(n,2),...,C(n,n)) (LCM指的是最小公倍数)

思路:一开始想每次求两个数的最小公倍数,然后求得n个数的最小公倍数,结果发现打表打不出= =。看了别人思路,发现求的式子是一个数学公式

令a[n]=LCM(C(n,0),C(n,1),C(n,2),...,C(n,n)) b[n]=LCM(1,2,3,...,n) a[n]=b[n+1]/(n+1) if(n=p^k) bn=p*bn-1 else bn=bn-2 p为素数,符合要求的n如4,8,9,25

所以我们可以先把素数筛选出来,并判断1~n这些数是不是等于p^k,把a[]数组预处理出来,然后用逆元就行了。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 1000050
#define MOD 1000000007
int prime[maxn];
ll inv[maxn];
ll a[maxn];
void shake(){
    int i;
    inv[1]=1;
    for(i=2;i<=1000000;i++){
        inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
    }
}
ll gcd(ll a,ll b){
    return b ? gcd(b,a%b) : a;
}
int ok(int x)
{
    int t=x,i,j;
    while(t){
        if(t%prime[x]==0)t/=prime[x];
        else break;
    }
    if(t==1)return 1;
    else return 0;
}
void init()
{
    int i,j;
    for(i=1;i<=1000000;i++)prime[i]=i;
    for(i=2;i<=1000000;i++){
        if(prime[i]==i){
            for(j=i+i;j<=1000000;j+=i){
                prime[j]=i;
            }
        }
    }
    a[1]=1;
    for(i=2;i<=1000000;i++){
        if(ok(i)){
            a[i]=a[i-1]*prime[i]%MOD;
        }
        else a[i]=a[i-1];
    }
}
int main()
{
    int T,i,j;
    ll n,m,ans,num;
    shake();
    init();
    scanf("%d",&T);
    while(T--)
    {
        scanf("%lld",&n);
        printf("%lld\n",a[n+1]*inv[n+1]%MOD );
    }
    return 0;
}


转载于:https://www.cnblogs.com/herumw/p/9464538.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值