原文:http://jonathanlewis.wordpress.com/2006/12/27/analysing-statspack-4/
作者:Jonathan Lewis
使用statspack的一个方式是从数据中抽取出来趋势信息,两年前在我的网站上发布了一些样例的sql,这些sql用来完成这样的任务。
一种方式是生成一个快照,就执行一下spreport.sql脚本,然后使用grep(unix)或者find(windows)从产生的结果文件结合中抽取数据,举个例子,系统当前有过度的I/O和cpu尖刺,我会检查一下系统当前有哪些正在进行 table scans 或者scattered read。如果我已经积累了statspack报告的归档,你们我就可以很容易的得到趋势报告:
grep "table scan rows gotten" sp*.txt Statistic Total per Second per Trans sp_17011430.txt:table scan rows gotten 67,522,182 75,024.7 166.0 sp_17011445.txt:table scan rows gotten 60,288,793 66,987.6 168.3 sp_17011500.txt:table scan rows gotten 68,181,066 75,672.7 154.8 sp_17011515.txt:table scan rows gotten 68,845,922 76,580.6 207.2 sp_17011530.txt:table scan rows gotten 132,836,448 147,432.2 422.4 sp_17011545.txt:table scan rows gotten 134,103,072 149,003.4 430.5 sp_17011600.txt:table scan rows gotten 454,254,201 504,726.9 1,381.8 sp_17011615.txt:table scan rows gotten 218,650,324 243,215.0 577.1 sp_17011630.txt:table scan rows gotten 76,841,570 85,379.5 208.6 sp_17011645.txt:table scan rows gotten 66,468,544 73,853.9 199.4
在这个报告中,我插入了头信息,来清楚的看到数字的意思,如果仅仅使用grep的话是没有这部分信息的。
我已经设置了这个系统按照月/天/小时/分钟来作为文件名称的格式,可以看出结果是从15分钟快照的集合中产生的,按照命名的习惯,grep命令刚好按照正确的顺序得出结果。
在这个例子中,可以看到在3:15 pm到4:15 pm中有一些异常,峰值在4:00pm左右,平均下来 每个事物的table scan的量迅速的上升。在这个时间上可以看下statspack的其他信息是否和这部分一致,仔细检查一下在4:00 pm时间的statspack的整体报告,看看是否有一些特殊的任务在执行。
定时的自动调用spreport.sql, 并产生合适的文件名,可以使用下面的脚本。
execute statspack.snap(5) column begin_snap new_value begin_snap column end_snap new_value end_snap column report_name new_value report_name column instance_number new_value instance_number column dbid new_value dbid select dbid from v$database; select instance_number from v$instance; select begin_snap, end_snap, 'sp_' || snap_time || '.txt' report_name from ( select lag(snap_id,1) over(order by snap_id) begin_snap, snap_id end_snap, lead(snap_id,1) over(order by snap_id) next_snap, to_char(snap_time,'mmddhh24mi') snap_time from stats$snapshot where dbid = &dbid and instance_number = &instance_number ) where next_snap is null ; start ?/rdbms/admin/spreport
这个脚本执行一个snapshot,然后找到相邻的两个snapshot的id,根据后面的snapshot的时间戳建立文件名称,这个脚本命名为spreport.sql。
很明显,不能通过dbms_job来执行这个脚本,可以选择其他的方式,如果使用10g,可以选择dbms_scheduler。