CVPR 2019: Generating 3D Adversarial Point Clouds 生成三维对抗点云数据

本文介绍了一篇CVPR2019的论文,该研究针对PointNet提出多种对抗点云生成算法,包括点扰动与生成。研究通过引入有意义形状的点簇等方式,对现有3D深度模型的安全性进行了挑战,并定义了相应的扰动评估标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目前做的方向是点云分类,CVPR 2019中了的这篇论文算是颠覆了当前以PointNet为基础的使用深度学习方法进行的点云分类研究,特此关注下这篇文章。

论文链接:https://arxiv.org/abs/1809.07016

摘要:

已知深度神经网络容易受到精心设计的对抗性的例子的影响,导致模型做出错误的预测。虽然已经广泛研究了2D图像和CNN的对抗性示例,但是对诸如点云的3D数据的关注较少。鉴于许多安全关键的3D应用程序(如自动驾驶),研究对抗点云如何影响当前的深3D模型非常重要。在这项工作中,我们提出了几种新的算法来针对PointNet制作对抗点云,PointNet是一种广泛使用的用于点云处理的深度神经网络。我们的算法以两种方式工作:对抗点扰动和对抗点生成。对于点扰动,我们可微小地改变现有点。对于点生成,我们生成一组独立的和分散的点或少量(1-3)具有有意义形状的点簇,例如可以隐藏在肉眼认为中的球和飞机点云模型中。此外,我们制定了针对点云攻击的六种扰动测量指标,并进行了大量实验来评估所提出的算法。

 

目前还没开源代码,等待开源……

对于点云分类来说,这是之前没有见到过的研究方向,未来的点云分类方法的验证或许需要进行此类的算法可行性验证。

很开心看到点云方向的逐渐繁荣。

 

转载于:https://www.cnblogs.com/shirley-bhu/p/10616860.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值