[Algorithm] Finding Prime numbers - Sieve of Eratosthenes

Given a number N, the output should be the all the prime numbers which is less than N.

The solution is called Sieve of Eratosthenes

First of all, we assume all the number from 2 to N are prime number (0 & 1 is not Prime number).

According to the Primse number defination that Prime number can only be divided by 1 & itself. So what we do is start from

2 * 2 = 4

2 * 3 = 6

2 * 4 = 8

2 * 5 = 10

...

2 * j <= N

3 * 2 = 6

3 * 3 = 9

...

i * j <= N

i is from 2 to N.

We are going to mark all the caluclated number to be Not prime numbers. In the end, the remining numbers should be Primes.

function findPrime (n) {
  let primes = [];
  
  for (let i = 0; i <= n; i++) {
    primes.push(1);
  }
  
  primes[0] = 0;
  primes[1] = 0;
  
  for (let i = 2; i <= Math.sqrt(n); i++) {
    if (primes[i] === 1) {
        for (let j = 2; i * j <= n; j++) {
          primes[i * j] = 0;
        }    
    }
  }
  
  return primes.map((val, index) => val === 1 ? index: 0).filter(Boolean);
} 

findPrime(14) // [ 2, 3, 5, 7, 11, 13 ]

 

One optimization, we don't need to loop i from 2 to N, it is enough from 2 to Math.sqrt(n)

转载于:https://www.cnblogs.com/Answer1215/p/10865257.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值