Description
在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮。请问有多少种放置方法?中国象棋中炮的行走方式大家应该很清楚吧.
Input
一行包含两个整数N,M,中间用空格分开.
Output
输出所有的方案数,由于值比较大,输出其mod 9999973
Sample Input
1 3
Sample Output
7
Hint
除了在3个格子中都放满炮的的情况外,其它的都可以.
100%的数据中N,M不超过100
50%的数据中,N,M至少有一个数不超过8
30%的数据中,N,M均不超过6
题目中可见,每一行每一列最多只能放两个炮
可以设f[i][j][k]为前i行有j列放一个炮,k列放两个炮,然后分类讨论:
①不放
②在已经放过一个的放一个
③在没有放过的地方放一个
④在没有放过的地方放两个
⑤在放过一个和没有放过的地方放一个
(Tips:记住要取模)
代码如下:
#include<cstdio>
#include<cstring>
using namespace std;
long long f[151][151][151];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
memset(f,0,sizeof(f));
f[0][0][0]=1;
for (int i=0;i<n;i++)
{
for (int j=0;j<=m;j++)
{
for (int k=0;k<=j;k++)
{
if (f[i][j][k]>=9999973) f[i][j][k]%=9999973;
f[i+1][j][k]+=f[i][j][k];
if (j<m) f[i+1][j+1][k]+=f[i][j][k]*(m-j);
if (j<m-1) f[i+1][j+2][k]+=f[i][j][k]*(m-j)*(m-j-1)/2;
if (j>0&&k<j) f[i+1][j][k+1]+=f[i][j][k]*(j-k);
if (j>0&&k<j-1) f[i+1][j][k+2]+=f[i][j][k]*(j-k)*(j-k-1)/ 2;
if (j<m&&j>0&&k<j) f[i+1][j+1][k+1]+=f[i][j][k]*(m-j)*(j-k);
}
}
}
long long ans=0;
for (int i=0;i<=m;i++)
{
for (int j=0;j<=i;j++)
{
ans+=f[n][i][j];
if (ans>=9999973) ans%=9999973;
}
}
printf("%d",(int)ans);
return 0;
}