31 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1、10、11、12、13因此共出现6次,但是对于后面问题他就没辙了。ACMer希望你们帮帮他,并把问题更加普遍化,可以很快的求出任意非负整数区间中1出现的次数(从1 到 n 中1出现的次数)。
方法一:归纳出规律来解题
感觉看解题思路,废了我半条命啊
链接:https://www.nowcoder.com/questionTerminal/bd7f978302044eee894445e244c7eee6
来源:牛客网
/* 设N = abcde ,其中abcde分别为十进制中各位上的数字。
来源:牛客网
/* 设N = abcde ,其中abcde分别为十进制中各位上的数字。
如果要计算百位上1出现的次数,它要受到3方面的影响:百位上的数字,百位以下(低位)的数字,百位以上(高位)的数字。
① 如果百位上数字为0,百位上可能出现1的次数由更高位决定。比如:12013,则可以知道百位出现1的情况可能是:100~199,1100~1199,2100~2199,,...,11100~11199,一共1200个。可以看出是由更高位数字(12)决定,并且等于更高位数字(12)乘以 当前位数(100)。
② 如果百位上数字为1,百位上可能出现1的次数不仅受更高位影响还受低位影响。比如:12113,则可以知道百位受高位影响出现的情况是:100~199,1100~1199,2100~2199,,....,11100~11199,一共1200个。和上面情况一样,并且等于更高位数字(12)乘以 当前位数(100)。但同时它还受低位影响,百位出现1的情况是:12100~12113,一共114个,等于低位数字(113)+1。
③ 如果百位上数字大于1(2~9),则百位上出现1的情况仅由更高位决定,比如12213,则百位出现1的情况是:100~199,1100~1199,2100~2199,...,11100~11199,12100~12199,一共有1300个,并且等于更高位数字+1(12+1)乘以当前位数(100)。 */
这里的 X∈[1,9],因为 X=0 不符合下列规律,需要单独计算。
题目规律可以总结到上升到:求解整数中X的个数
1 4 7 9 0(第5/4/3/2/1位)
1 public class Solution { 2 public int NumberOf1Between1AndN_Solution(int n) { 3 int result = 0;//总的1的个数 4 int i = 1;//当前位 5 int current = 0,after = 0,before = 0; 6 while((n/i)!= 0){ 7 current = (n/i)%10; //当前位数字 8 before = n/(i*10); //高位数字 9 after = n-(n/i)*i; //低位数字 10 //如果为0,出现1的次数由高位决定,等于高位数字 * 当前位数 11 if (current == 0) 12 result += before*i; 13 //如果为1,出现1的次数由高位和低位决定,高位*当前位+低位+1 14 else if(current == 1) 15 result += before * i + after + 1; 16 //如果大于1,出现1的次数由高位决定,//(高位数字+1)* 当前位数 17 else{ 18 result += (before + 1) * i; 19 } 20 //前移一位 21 i = i*10; 22 } 23 return result; 24 } 25 }
程序中的1可以改成1--9任意一个数组
方法二:暴力求解
也能通过牛客的代码,但实际使用中不推荐
依次遍历每个数,判断每个数里面是否包含1
1 public class Solution { 2 public int NumberOf1Between1AndN_Solution(int n) { 3 int result = 0; 4 for(int i=1;i<=n;i++) result += countOne(i); 5 return result; 6 } 7 public int countOne(int N){ 8 int temp =0; 9 while(N>0){ 10 if( (N%10) == 1) temp++; //一个数%10,能保留下最后一位 11 N /= 10; //一个数/10,能够舍弃掉最后一位 12 } 13 return temp; 14 } 15 }
方法三:转换成字符串,然后去判断每一位是否是1
1 public class Solution { 2 public int NumberOf1Between1AndN_Solution(int n) { 3 int res = 0; 4 StringBuffer s = new StringBuffer(); 5 for(int i = 1; i<=n; i++){ 6 s.append(i); 7 } 8 String str = s.toString(); 9 for(int i=0; i<str.length(); i++){ 10 if(str.charAt(i) == '1') 11 res++; 12 } 13 return res; 14 } 15 }
11 二进制中1的个数
题目要求: 输入一个整数,输出该数二进制表示中1的个数。其中负数用补码表示。
负数的过程是一样的,只不过负数在计算机中是用反码的补码表示的,至于算1的个数那就是同样的过程。
在计算机中,数值一律用补码存储。而楼主用的是位运算,所以无所谓正数负数
解题思路:复制于牛客网上 核心点:把一个二进制整数减去1,再和原整数做与运算,会把该整数最右边一个1变成0
如果一个整数不为0,那么这个整数至少有一位是1。如果我们把这个整数减1,那么原来处在整数最右边的1就会变为0,原来在1后面的所有的0都会变成1(如果最右边的1后面还有0的话)。其余所有位将不会受到影响。
举个例子:一个二进制数1100,从右边数起第三位是处于最右边的一个1。减去1后,第三位变成0,它后面的两位0变成了1,而前面的1保持不变,因此得到的结果是1011.我们发现减1的结果是把最右边的一个1开始的所有位都取反了。这个时候如果我们再把原来的整数和减去1之后的结果做与运算,从原来整数最右边一个1那一位开始所有位都会变成0。如1100&1011=1000.也就是说,把一个整数减去1,再和原整数做与运算,会把该整数最右边一个1变成0.那么一个整数的二进制有多少个1,就可以进行多少次这样的操作。
1 import java.util.*; 2 public class Solution { 3 public static int NumberOf1(int n) { 4 int count =0; 5 while(n!= 0){ 6 count++; 7 n = n & (n - 1); 8 } 9 return count; 10 } 11 public static void main(String [] args){ 12 Scanner sc = new Scanner(System.in); 13 int n = sc.nextInt(); 14 int result = NumberOf1(n); 15 System.out.println(n+"的二进制中有"+result+"个1"); 16 } 17 }