题目描述
小红很喜欢玩一个叫打砖块的游戏,这个游戏的规则如下:
在刚开始的时候,有n×m列的砖块,小红有k发子弹。小红每次可以用一发子弹,打碎某一列当前处于这一列最下面的那块砖,并且得到相应的得分。(如图所示)
某些砖块在打碎以后,还可能将得到一发子弹的奖励。最后当所有的砖块都打碎了,或者小红没有子弹了,游戏结束。
小红在游戏开始之前,就已经知道每一块砖在打碎以后的得分,并且知道能不能得到一发奖励的子弹。小红想知道在这次游戏中她可能的最大得分,可是这个问题对于她来说太难了,你能帮帮她吗?
输入输出格式
输入格式:
第一行有3个正整数,n,m,k。表示开始的时候,有n×m 列的砖块,小红有k发子弹。
接下来有n行,每行的格式如下:
f1c1f2c2f3c3……fmcm
其中fi为正整数,表示这一行的第ii列的砖,在打碎以后的得分。ci为一个字符,只有两种可能,Y或者N。Y表示有一发奖励的子弹,N表示没有。
所有的数与字符之间用一个空格隔开,行末没有多余的空格。
输出格式:
仅一个正整数,表示最大的得分。
输入输出样例
说明
对于20%的数据,满足1≤n,m≤5,1≤k≤10,所有的字符c都为N
对于50%的数据,满足1≤n,m≤200,1≤k≤200,所有的字符c都为N
对于100%的数据,满足1≤n,m≤200,1≤k≤200,字符c可能为Y
对于100%的数据,所有的f值满足1≤f≤10000
还是看题解理解到了这道题转移的巧妙。
这道题精髓实际上在预处理上面,预处理出每一列用多少子弹能够打到的分数,同时要分别处理最后一颗子弹打在当前列和没有的情况。因为当子弹不够时,可以选择先去后面的列打,获得了子弹后再返回来打当前列。
这里两个数组中y和n分别表示最后一颗子弹在当前列和不在。
#include<bits/stdc++.h> using namespace std; int n, m, k; int dpy[205][205], dpn[205][205], fy[205][205], fn[205][205]; int a[205][205], b[205][205]; int main() { scanf("%d%d%d", &n, &m, &k); for(int i = 1; i <= n; i ++) for(int j = 1; j <= m; j ++) { char opt; scanf("%d %c", &a[i][j], &opt); if(opt == 'N') b[i][j] = 0; else b[i][j] = 1; } for(int j = 1; j <= m; j ++) { int cnt = 0; for(int i = n; i >= 1; i --) { if(b[i][j]) dpn[j][cnt] += a[i][j]; else { cnt ++; dpy[j][cnt] = dpn[j][cnt-1] + a[i][j]; dpn[j][cnt] = dpn[j][cnt-1] + a[i][j]; } } } for(int i = 1; i <= m; i ++) for(int j = 0; j <= k; j ++)//前i列共用的子弹 for(int q = 0; q <= n && q <= j; q ++) {//当前用的子弹 fn[i][j] = max(fn[i][j], fn[i-1][j-q] + dpn[i][q]);//最后一颗子弹不在当前列和前一列 if(q != 0) fy[i][j] = max(fy[i][j], fn[i-1][j-q] + dpy[i][q]);// 后打当前列 if(j - q > 0) fy[i][j] = max(fy[i][j], fy[i-1][j-q] + dpn[i][q]);//先打当前列 } printf("%d", fy[m][k]); return 0; }