hdu 4975 最大流解决行列和求矩阵问题,用到矩阵dp优化

//刚开始乱搞。
//网络流求解,如果最大流=所有元素的和则有解;利用残留网络判断是否唯一,
//方法有两种,第一种是深搜看看是否存在正边权的环,见上一篇4888
//至少四个点构成的环,第二种是用矩阵dp,只需要满足某行的i列元素<9,j列元素>0,而另一行的i列元素>0,j列元素<9,
//可以满足互补就证明不唯一,这个画图不难看出
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
#define inf 0x3fffffff
#define N 1100
struct node {
int u,v,w,next;
}bian[N*N*4];
int head[N],yong,dis[N],work[N];
void init(){
yong=0;
memset(head,-1,sizeof(head));
}
void addbian(int u,int v,int w) {
bian[yong].u=u;
bian[yong].v=v;
bian[yong].w=w;
bian[yong].next=head[u];
head[u]=yong++;
}
void add(int u,int v,int w) {
addbian(u,v,w);
addbian(v,u,0);
}
int min(int a,int b)
{
    return a<b?a:b;
}
int bfs(int s,int t)
{
    memset(dis,-1,sizeof(dis));
    queue<int>q;
    q.push(s);
    dis[s]=0;
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        for(int i=head[u];i!=-1;i=bian[i].next)
        {
            int v=bian[i].v;
            if(bian[i].w&&dis[v]==-1)
            {
                dis[v]=dis[u]+1;
                q.push(v);
                if(v==t)
                    return 1;
            }
        }
    }
    return 0;
}
int dfs(int  s,int limit,int t)
{
    if(s==t)return limit;
    for(int &i=work[s];i!=-1;i=bian[i].next)
    {
        int v=bian[i].v;
        if(bian[i].w&&dis[v]==dis[s]+1)
        {
            int tt=dfs(v,min(limit,bian[i].w),t);
            if(tt)
            {
                bian[i].w-=tt;
                bian[i^1].w+=tt;
                return tt;
            }
        }
    }
    return 0;
}
int dinic(int s,int t)
{
    int ans=0;
    while(bfs(s,t))
    {
        memcpy(work,head,sizeof(head));
        while(int tt=dfs(s,inf,t))
            ans+=tt;
    }
    return ans;
}
int f[N],ff[N],dp[N][N],ma[N][N];
int judge(int n,int m) {
     int i,j,k;
     memset(dp,0,sizeof(dp));
     for(i=1;i<=n;i++)
     for(j=head[i];j!=-1;j=bian[j].next ){
       int v=bian[j].v;
        if(v>n&&v<=n+m)
            ma[i][v-n]=bian[j^1].w;
     }
     for(i=1;i<=n;i++) {
        if(f[i]==0||f[i]==9*m)continue;
        for(j=1;j<=m;j++) {
            if(ff[j]==0||ff[j]==9*n)continue;
            for(k=j+1;k<=m;k++) {
                int flag1=0,flag2=0;
                if(ma[i][j]>0&&ma[i][k]<9) {
                    if(dp[k][j])return 1;
                    flag1=1;
                }
                if(ma[i][j]<9&&ma[i][k]>0) {
                    if(dp[j][k])return 1;
                    flag2=1;
                }
                if(flag1)dp[j][k]=1;
                if(flag2)dp[k][j]=1;
            }
        }
     }
     return 0;
}
int main() {
     int m,i,j,s,n,t,suma,k,sumb,T,cou=0;
     scanf("%d",&T);
     while(T--) {
     scanf("%d%d",&n,&m);
     k=9;
        s=0;t=n+m+1;
        init();
        suma=0;sumb=0;
        for(i=1;i<=n;i++) {
            scanf("%d",&f[i]);
            suma+=f[i];
            add(s,i,f[i]);
        }
        for(i=1;i<=m;i++) {
            scanf("%d",&ff[i]);
            sumb+=ff[i];
            add(i+n,t,ff[i]);
        }
        for(i=1;i<=n;i++)
            for(j=1;j<=m;j++)
            add(i,j+n,k);
        if(suma!=sumb) {
            printf("Case #%d: So naive!\n",++cou);
            continue;
        }
        k=dinic(s,t);
        if(k!=suma) {
       printf("Case #%d: So naive!\n",++cou);
            continue;
        }
        k=judge(n,m);
       // printf("%d\n",k);
        if(k)
             printf("Case #%d: So young!\n",++cou);
        else
              printf("Case #%d: So simple!\n",++cou);
     }
return 0;}

转载于:https://www.cnblogs.com/thefirstfeeling/p/4410634.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要我们将这些木棒割成一些给定长度,且要每种长度的木棒的数量都是一样的,最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值