埃氏筛法的一般写法(区间筛法)

问题:

求 $[L, R]$ 之间的素数表

解法:

一个合数 $n$ 的最小素因子不超过 $\sqrt{n}$。

先用埃氏筛法求出 $[1,\lfloor \sqrt{R} \rfloor]$ 上的素数表

再在 $[L, R]$ 上用埃氏筛法求素数

 

const int N(1e5);
bool isprime[N];
int prime[N];
void init(){
    memset(isprime, -1, sizeof(isprime));
    isprime[0]=isprime[1]=0;
    int np=0;
    for(int i=0; i<N; i++){
        if(isprime[i]){
            prime[np++]=i;
            for(int j=2*i; j<N; j+=i)
                isprime[j]=0;
        }
    }        
}
typedef long long ll;
const int M(1e5);
bool ok[M];
int res[M];
int seive(ll l, ll r){    // l, r >=1
    memset(ok, -1, sizeof(ok));
    if(l==1) ok[0]=0;    //error-prone
    int k=sqrt(r);
    for(int i=0; prime[i]<=k; i++){
        ll j=(l+prime[i]-1)/prime*prime;
        j=max(j, (ll)2*prime[i]);
        for(; j<=r; j+=prime[i])
            ok[j-l]=0;
    }
    int np=0;
    for(int i=0; i<=r-l; i++)
        if(ok[i]) res[np++]=i+(ll)l;
    return np;
}

 

 更新:

不必先把 $[2, \lfloor \sqrt{R} \rfloor]$ 上的素数存下来。更好的做法是先分别做好 $[2, \lfloor \sqrt{R} \rfloor]$ 和 $[L, R]$ 的表,然后从 $[2, \lfloor \sqrt{R} \rfloor]$ 的表中筛得素数的同时,也将其倍数从 $[L, R]$ 中划去。

const int N=1e6+5, M=sqrt(1e9);


bool is_prime[N];
bool is_prime_small[M+1];

void segment_seive(int l, int r){   // [l,r]
    int t=sqrt(r);
    for(int i=2; i<=t; i++)
        is_prime_small[i]=true;
    for(int i=0; i<=r-l; i++)
        is_prime[i]=true;

    for(int i=2; i<=t; i++)
        if(is_prime_small[i]){
            for(int j=2*i; j<=t; j+=i)
                is_prime_small[j]=false;
            for(int j=max(2, (l+i-1)/i)*i; j<=r; j+=i)
                is_prime[j-l]=false;
        }
}

 

 

 

 

 

 

转载于:https://www.cnblogs.com/Patt/p/4805212.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值