埃氏筛法、区间筛法(求素数个数)

1、埃氏筛法

        给定整数n,请问n以内有多少个素数?(n≤106)

思路:首先,将2到n范围内的所有整数写下来。其中最小的数字2是素数。将表中所有2的倍数都划去。表中剩余最小的数字是3,它不能被更小的素数整除,所以是素数。再将表中3的倍数都划去。以此类推,如果表中最小的数字是m时, m 就是素数。像这样反复操作,就能以此枚举n以内的素数。

int pri[Max_n]; //第i个素数
bool vis[Max_n];//为false表示i是素数

int Prime(int n){
    int k=0;
    memset(vis,0,sizeof(vis));
    for(int i=2;i<=n;i++){
        if(!vis[i]){
            pri[k++]=i;
            for(int j=2*i;j<=n;j+=i)vis[j]=true;
        }
    }
    return k;
}

2、区间筛法

      给定整数a和b,请问区间[a,b)内有多少个素数?(a<b≤1012,b-a106

思路:b以内的合数的最小质因数一定不超过√b。如果有b以内的素数表的话,就可以把埃氏筛法运用在[a,b)上了。也就是说,先分别做好[2,b)的表和[a,b)的表,然后从[2,b)的表中筛得素数的同时,也将其倍数从[a,b)的表中划去,最后剩下的就是[a,b)内的素数了。

bool v1[Max_n1]; //数组大小为sqrt(b)
bool v2[Max_n2]; //数组大小为b-a

ll Prime(ll a,ll b){
    for(ll i=0;i*i<b;i++)v1[i]=true;
    for(ll i=0;i<b-a;i++)v2[i]=true;

    for(ll i=2;i*i<b;i++){
        if(v1[i]){
            for(ll j=2*i;j*j<b;j+=i)v1[j]=false; //筛[2,b)
            for(ll j=max(2LL,(a+i-1)/i)*i;j<b;j+=i)v2[j-a]=false; //筛[a,b)
            //2LL是2的长整数形式
            //((a+i-1)/i)*i是符合>=a最小是i倍数的数
        }
    }
    ll k=0;
    for(ll i=0;i<b-a;i++){
        if(v2[i])k++;
    }
    return k;
}
展开阅读全文

Git 实用技巧

11-24
这几年越来越多的开发团队使用了Git,掌握Git的使用已经越来越重要,已经是一个开发者必备的一项技能;但很多人在刚开始学习Git的时候会遇到很多疑问,比如之前使用过SVN的开发者想不通Git提交代码为什么需要先commit然后再去push,而不是一条命令一次性搞定; 更多的开发者对Git已经入门,不过在遇到一些代码冲突、需要恢复Git代码时候就不知所措,这个时候哪些对 Git掌握得比较好的少数人,就像团队中的神一样,在队友遇到 Git 相关的问题的时候用各种流利的操作来帮助队友于水火。 我去年刚加入新团队,发现一些同事对Git的常规操作没太大问题,但对Git的理解还是比较生疏,比如说分支和分支之间的关联关系、合并代码时候的冲突解决、提交代码前未拉取新代码导致冲突问题的处理等,我在协助处理这些问题的时候也记录各种问题的解决办法,希望整理后通过教程帮助到更多对Git操作进阶的开发者。 本期教程学习方法分为“掌握基础——稳步进阶——熟悉协作”三个层次。从掌握基础的 Git的推送和拉取开始,以案例进行演示,分析每一个步骤的操作方式和原理,从理解Git 工具的操作到学会代码存储结构、演示不同场景下Git遇到问题的不同处理方案。循序渐进让同学们掌握Git工具在团队协作中的整体协作流程。 在教程中会通过大量案例进行分析,案例会模拟在工作中遇到的问题,从最基础的代码提交和拉取、代码冲突解决、代码仓库的数据维护、Git服务端搭建等。为了让同学们容易理解,对Git简单易懂,文章中详细记录了详细的操作步骤,提供大量演示截图和解析。在教程的最后部分,会从提升团队整体效率的角度对Git工具进行讲解,包括规范操作、Gitlab的搭建、钩子事件的应用等。 为了让同学们可以利用碎片化时间来灵活学习,在教程文章中大程度降低了上下文的依赖,让大家可以在工作之余进行学习与实战,并同时掌握里面涉及的Git不常见操作的相关知识,理解Git工具在工作遇到的问题解决思路和方法,相信一定会对大家的前端技能进阶大有帮助。
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值