在中考中,我们要掌握代数式及整式的有关概念及运算法则, 在运算过程中注意运算顺序, 掌握运算规律,掌握乘法公式并能灵活运用,在实际问题中,抽象的代数式以及代数式的应用题值得重视。要掌握并灵活运用分式的基本性质,在通分和约分时,都要注意分解因式知识的应用。化解求值题,要注意整体思想和解题技巧,对于分式的应用题,要能从实际问题中抽象出数学模型。
下面就来看看相关的考点梳理和解题技巧吧!
一、考点知识梳理
【考点1 代数式定义及列代数式】
1.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式。
2.代数式的值:用数值代替代数式里的字母,按照代数式里的运算关系,计算后所得的结果叫做代数式的值。
【考点2 幂的运算】
1.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。
am•
an=
am+n(
m,
n是正整数)
2.幂的乘方法则:底数不变,指数相乘。
(
am)
n=
amn(
m,
n是正整数)
3.积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘。
(
ab)
n=
anbn(
n是正整数)
4.同底数幂的除法法则:底数不变,指数相减。
am÷
an=
am﹣n(
a≠0,
m,
n是正整数,
m>
n)
【考点3 合并同类项】
所含字母相同并且相同字母的指数也分别相同的项叫做同类项.所有的常数项都是同类项。
把多项式中同类项合成一项,叫做合并同类项。
合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
【考点4 整式的乘法】
单项式乘以多项式m(a+b)=am+bm
多项式乘以多项式(a+b)(m+n)=am+an+bm+bn
二、考点分析
【考点1 代数式定义及列代数式】
【解题技巧】(1)在建立数学模型解决问题时,常需先把问题中的一些数量关系用代数式表示出来,也就是列出代数式;
(2)列代数式的关键是正确分析数量关系,掌握文字语言(和、差、积、商、乘以、除以等)在数学语言中的含义;
(3)注意书写规则:a×b通常写作a·b或ab;1÷a通常写作;数字通常写在字母前面,如a×3通常写作3a;带分数一般写成假分数,如1a通常写作a。
【考点2 幂的运算】
【解题技巧】
1.在应用同底数幂的乘法法则时,应注意:
①底数必须相同,如2
3与2
5,(
a2b2)3与(
a2b2)4,(
x﹣
y)
2与(
x﹣
y)
3等;
②
a可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.
2.概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂。
3.注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果。
【考点3 合并同类项】
【解题技巧】
合并同类项时要注意以下三点:
(1)要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;
(2)明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;
(3)“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变。
(4)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
【考点4 整式的乘法】
【解题技巧】
多项式的乘法要注意多项式中每一项不要漏乘,还要注意运算符号,遵循去括号的法则。
更多阅读:
中考复习专题一:实数及其运算
初中数学最重要的的九大几何模型
搞定初中数学的九大经典解题方法之反证法
初中生必须掌握的九大经典解题方法之面积法
初中生必须掌握的九大经典解题方法之待定系数法
初中生必须掌握的九大经典解题方法之 判别式法与韦达定理
初中生必须掌握的九大经典解题方法之换元法
搞定初中数学,熟悉这九大经典解题方法就够了!
记住这三十个口诀,初中数学提分不用愁!