第一章 图像处理基础(直方图、高斯滤波、直方图均衡化)

 

本次实验所用图片:

软件:pycharm

一、直方图

import cv2 as cv
from matplotlib import pyplot as plt
import numpy as np


path = '1.jpg'
img = cv.imread(path, 0)
plt.hist(img.ravel(), 256, [0, 256])

plt.show()
View Code

 

运行上面的代码,可以得出图片的直方图:

 

 二、高斯滤波

# coding=utf-8
import cv2
import numpy as np

image = cv2.imread("1.jpg", 0)

lut = np.zeros(256, dtype=image.dtype)  # 创建空的查找表

hist, bins = np.histogram(image.flatten(), 256, [0, 256])
cdf = hist.cumsum()  # 计算累积直方图
cdf_m = np.ma.masked_equal(cdf, 0)  # 除去直方图中的0值
cdf_m = (cdf_m - cdf_m.min()) * 255 / (cdf_m.max() - cdf_m.min())  # 等同于前面介绍的lut[i] = int(255.0 *p[i])公式
cdf = np.ma.filled(cdf_m, 0).astype('uint8')  # 将掩模处理掉的元素补为0

# 计算
result2 = cdf[image]
result = cv2.LUT(image, cdf)

cv2.imshow("OpenCVLUT", result)
cv2.imshow("NumPyLUT", result2)
cv2.waitKey(0)
cv2.destroyAllWindows()
View Code

 

  上述代码分别用3×3和5×5的滤波器对图像进行滤波处理,通过比较中央像素与周围像素亮度的差值,改变中央像素的值为周围模糊半径内(3×3或5×5)像素点的平均值,显然,模糊半径越大,图像会变得更模糊。这样处理后的图片相比于原图片会变得更模糊,即模糊处理。

  效果图如下:

 

           3×3效果图                       5×5效果图

仔细看可以看出5×5的效果较3×3的更模糊。

 

三、直方图均衡化

 

# coding=utf-8
import cv2
import numpy as np

image = cv2.imread("1.jpg", 0)

lut = np.zeros(256, dtype=image.dtype)  # 创建空的查找表

hist, bins = np.histogram(image.flatten(), 256, [0, 256])
cdf = hist.cumsum()  # 计算累积直方图
cdf_m = np.ma.masked_equal(cdf, 0)  # 除去直方图中的0值
cdf_m = (cdf_m - cdf_m.min()) * 255 / (cdf_m.max() - cdf_m.min())  # 等同于前面介绍的lut[i] = int(255.0 *p[i])公式
cdf = np.ma.filled(cdf_m, 0).astype('uint8')  # 将掩模处理掉的元素补为0

# 计算
result2 = cdf[image]
result = cv2.LUT(image, cdf)

cv2.imshow("OpenCVLUT", result)
cv2.imshow("NumPyLUT", result2)
cv2.waitKey(0)
cv2.destroyAllWindows()
View Code

 

 

        灰度化处理               直方图均衡化处理后

 可以看出,图像经过直方图均衡化,图像增强。

转载于:https://www.cnblogs.com/wenbozhu/p/10477992.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值