python dataframe索引字段相同的合并,Pandas DataFrame-将具有相同索引的一列值组合到列表中...

该博客讲述了如何使用Pandas DataFrame处理具有相同索引的行,将相同索引下的'Value'列的值合并成列表,同时保持'Value2'列的值不变。作者首先尝试了将每个'Value'转换为列表,然后通过`groupby`和`unique`函数结合索引列以外的所有列,成功地将多个'Value'合并。在输出到CSV文件时遇到了重复头部和Value列表被截断的问题。
摘要由CSDN通过智能技术生成

I've been at this issue for awhile to no avail. This is almost a duplicate of at least one other question on here, but I can't quite figure out how to do exactly what I'm looking for from related answers online.

I have a Pandas DataFrame (we'll call it df) that looks something like:

Name Value Value2

'A' '8.8.8.8' 'x'

'B' '6.6.6.6' 'y'

'A' '6.6.6.6' 'x'

'A' '8.8.8.8' 'x'

Where Name is the index. I want to convert this to something like that looks like:

Name Value Value2

'A' ['8.8.8.8', '6.6.6.6'] 'x'

'B' ['6.6.6.6'] 'y'

So, basically, every Value that corresponds to the same index should be combined into a list (or a set, or a tuple) and that l

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值