【TOJ 5103】Electric Fence(皮克定理)

描述

In this problem, `lattice points' in the plane are points with integer coordinates.

In order to contain his cows, Farmer John constructs a triangular electric fence by stringing a "hot" wire from the origin (0,0) to a lattice point [n,m] (0<=;n<32,000, 0<m<32,000), then to a lattice point on the positive x axis [p,0] (0<p<32,000), and then back to the origin (0,0).

A cow can be placed at each lattice point within the fence without touching the fence (very thin cows). Cows can not be placed on lattice points that the fence touches. How many cows can a given fence hold?

输入

The single input line contains three space-separated integers that denote n, m, and p.

输出

A single line with a single integer that represents the number of cows the specified fence can hold.

样例输入

7 5 10

样例输出

20

题意:

有一个位于第一象限的三角形,其中一个点为原点(0,0),另外一个点位于x轴上的(p,0),剩下一个点位于(n,m)。

求这个三角形内的格点有多少个(不包括三角形的边界)

思路:

(1) 使用皮克定理可以轻松解决!

皮克定理是指一个计算点阵中顶点在格点上的多边形面积公式,该公式可以表示为2S=2a+b-2,其中a表示多边形内部的点数b表示多边形边界上的点数S表示多边形的面积

(2) gcd(线段的铅锤高,水平宽) = 线段的格点数-1

#include<bits/stdc++.h> 
using namespace std;
//pick:2s=2a+b-2;
//a内部点 b边界点 s多边形面积
int main()
{
    int n,m,p,b1,b2,a;
    double s;
    cin>>n>>m>>p;
    s=p*m*1.0/2;
    if(n!=0)
        b1=__gcd(n,m)-1;        //线段上除2个端点外的格点数
    else if(n==0)b1=m-1;
    
    if(p!=n)
        b2=__gcd(abs(n-p),m)-1;
    else if(p==n)b2=m-1;

    a=s-(b1+b2+p+2)/2+1;
    cout<<a<<endl;
    return 0;
}

转载于:https://www.cnblogs.com/kannyi/p/9584063.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值