给定一个已按照升序排列 的有序数组,找到两个数使得它们相加之和等于目标数。
函数应该返回这两个下标值 index1 和 index2,其中 index1 必须小于 index2。
说明:
- 返回的下标值(index1 和 index2)不是从零开始的。
- 你可以假设每个输入只对应唯一的答案,而且你不可以重复使用相同的元素。
示例:
输入: numbers = [2, 7, 11, 15], target = 9 输出: [1,2] 解释: 2 与 7 之和等于目标数 9 。因此 index1 = 1, index2 = 2 。
这道题,第一想法就是暴力解法,从左边遍历到右边,找到刚好能达到Target值的两个数,然后返回。算法复杂度O(N^2),所以执行速度也不尽人意
代码如下:
class Solution { public int[] twoSum(int[] numbers, int target) { int[] ans = new int[2]; int num1 = 0; int num2 = 0; for (int i = 0; i < numbers.length; i++) { num1 = numbers[i]; for (int j = 0; j < numbers.length; j++) { num2 = numbers[j]; if (num1 + num2 == target) { ans[0] = i+1; ans[1] = j+1; return ans; } } } return ans; } }
然后参考了评论,发现了二分做法。
因为是有序数组,所以设置两个指示,分别指向最左边和最右边,也就是数组的最大值和最小值,两个值相加,如果大于target,说明加的最大值太大了,指向最右边的指示就往左边移动一位,反之,如果小于target,说明加的最小值太小了,指向最左边的指示就往右边移动一位,直到两个数的相加等于target。不得不说,这种方法虽然之前做题的时候遇到过,但是实际应用时就是不懂用。还是要认真学习啊!
代码如下:
1 class Solution { 2 public int[] twoSum(int[] numbers, int target) { 3 int[] ans = new int[2]; 4 int left=0 , right=numbers.length-1; 5 while(left<right) 6 { 7 int sum=numbers[left]+numbers[right]; 8 if(sum<target) 9 left++; 10 else if(sum>target) 11 right--; 12 else { 13 ans=new int[] {left+1,right+1}; 14 break; 15 } 16 } 17 return ans; 18 } 19 }