一、题目
给定一个已按照 升序排列 的整数数组 numbers ,请你从数组中找出两个数满足相加之和等于目标数 target 。
函数应该以长度为 2 的整数数组的形式返回这两个数的下标值。numbers 的下标 从 1 开始计数 ,所以答案数组应当满足 1 <= answer[0] < answer[1] <= numbers.length 。
你可以假设每个输入只对应唯一的答案,而且你不可以重复使用相同的元素。
示例:
输入:numbers = [2,7,11,15], target = 9
输出:[1,2]
解释:2 与 7 之和等于目标数 9 。因此 index1 = 1, index2 = 2 。
提示:
- 2 < = n u m b e r s . l e n g t h < = 3 ∗ 1 0 4 2 <= numbers.length <= 3 * 10^4 2<=numbers.length<=3∗104
- − 1000 < = n u m b e r s [ i ] < = 1000 -1000 <= numbers[i] <= 1000 −1000<=numbers[i]<=1000
- numbers 按 递增顺序 排列
- -1000 <= target <= 1000
- 仅存在一个有效答案
二、代码
2.1 解法1:二分法
思路:
- 每次固定左边的数,然后对右边进行二分查找
class Solution {
public:
vector<int> twoSum(vector<int>& numbers, int target) {
int len=numbers.size(),low,high,mid,sum;
vector<int> ans(2);
for(int i=0;i<len;++i){
low=i+1,high=len-1;
while(low<=high){
mid=(low+high)/2;
sum=numbers[i]+numbers[mid];
if(sum==target){
ans[0]=i+1,ans[1]=mid+1;
return ans;
}else if(sum>target){
high=mid-1;
}else{
low=mid+1;
}
}
}
return ans;
}
};
2.2 解法2:双指针法
可以将时间复杂度降至O(n)
思路:
- 两个指针left,right,分别从前往后、从后往前
- sum=numbers[left]+numbers[right]
图片表示当数组长度为8时的搜索空间,由于i<j,搜索空间是一个倒上三角。 - 刚开始时sum=num[0]+num[7]
- 假设sum<target,则说明num[0]+num[k](k<=7)均小于target,可以排除掉第一行,即i++
- 假设sum>target,则num[k]+num[7](0=<k<7)均大于target,可以排除最后一列,即j–
- 不停的i++和j–,直至两者“错过”
class Solution {
public:
vector<int> twoSum(vector<int>& numbers, int target) {
int left=0,right=numbers.size()-1,sum;
vector<int> ans(2,-1);
while(left<right){
sum=numbers[left]+numbers[right];
if(sum==target){
ans[0]=left+1,ans[1]=right+1;
return ans;
}else if(sum<target){
left++;
}else right--;
}
return ans;
}
};