科学计算机读书报告单,科学网—读书报告-20171016 - 梁斌的博文

本文综述了近年来关于线虫脂代谢的研究进展,详细介绍了脂肪酸、甘油三酯、磷脂等脂类的合成途径及调控机制,并讨论了线虫作为肥胖模型的重要性。

文章题目:Lipid and Carbohydrate Metabolism in Caenorhabditis elegans

主要作者:Jennifer L. Watts and Michael Ristow

发表期刊:Genetics

去年,我博后时的老板Dr. Jennifer Watts就告诉我,正在给Wormbook写一篇关于线虫脂代谢的chapter。我本打算也着手写一篇类似的综述,但听到此消息,就暂时放下了,静静的、静静的等待老板的大作。

关于秀丽线虫脂代谢或者说作为肥胖模型的综述文章,如果我没有记错的话,最早可以追溯到10年前即2007年UCSF的Dr.Kaveh Ashrafi在Wormbook上发表的Obesityand the Regulation of Fat Metabolism(Ashrafi, 2007)。随后,这个领域的好几位研究人员都从不同角度写了类似的文章,如Ashrafi后面继续写的几篇(Lemieux and Ashrafi, 2015; Mullaney and Ashrafi,2009),以及他的博后Srinivasan(目前在加州TheScripps Research Institute)(Srinivasan, 2015),韩珉(Universityof Colorado, Boulder)及其博后朱焕乎(目前在上海科技大学)(Ying and Zhu, 2016; Zhu and Han, 2014),目前在香港科技大学的Ho YiMak(Mak, 2012)。另外,德国的WittingM和Schmitt-KopplinP写了一篇线虫lipidome的综述(Witting and Schmitt-Kopplin, 2016)。我老板也在2009年时写过一篇(发表在TrendsEndocrinol. Metab.)(Watts, 2009)。这些文章虽然大同小异,但各有千秋,分别探讨了研究秀丽线虫脂代谢的技术方法,脂类种类、功能以及代谢通路,再到脂代谢调控机制等方面。在此就不一一展开讨论它们,希望未来我来写类似文章时能尽量博览群书,吸“其”精华。

花开两朵,各表一枝。今天就简要介绍我老板发表在Genetics上,也是Wormbook的这篇。

从写作方式上,这篇文章是按照脂和糖的种类来写。如脂类,先写脂肪酸,随后是用于能量储存的中性脂甘油三酯和脂滴,再到组成生物膜结构的磷脂、鞘磷脂,最后是胆固醇和甾体类。

像很多review一样,文章的开篇以lipids为主做简要的背景介绍。任何一篇review不能面面俱到,否则没有特色。因此,文章也说明主要是集中在通过生化或者遗传等技术方法已经明确了的脂类、脂代谢基因及信号通路等。我们2013年在BMCGenomics上发表的文章是基于KEGG、Wormbase、其它物种同源基因、发表文章数据等整理出471个脂代谢相关基因。关于线虫脂质组学可以单独看WittingM和Schmitt-KopplinP去年发表的综述(Witting and Schmitt-Kopplin, 2016)。

首先,该文先讲脂肪酸(Fatty acids)【注:我前面的一篇博文也提到类似的内容“戏说美脂(1)——脂类简介”】,包括脂肪酸定义、分类、分析方法和技术(如气相色谱/质谱法、液相色谱/质谱法),简要讲了各种分析方法的优缺点。秀丽线虫脂肪酸来源包括内源合成和E.coli食物提供。从生物体能量利用的角度来讲,直接利用食物中的脂肪酸是一条更经济的途径,因此,线虫的脂肪酸大部分是来自食物,少部分<20%是内源合成的。但E.coli不能合成PUFAs和mmBCFA,线虫基因组具有合成这些脂肪酸的所有酶。如线虫基因组具有哺乳动物基因组缺失的把油酸转变为亚油酸的delta-12desaturase、以及能把omega-6转为omega-3的FAT-1去饱和酶。制造能提高omega-3的转基因小鼠和转基因猪就是利用线虫的FAT-1。因此,线虫是研究这些脂肪酸合成途径、生物学功能的很好模型。线虫中PUFAs合成途径是JenniferWatts很早就弄清的,mmBCFA是韩珉实验室的研究重点。mmBCFA更多的是参与sphingolipids合成,发挥功能。哺乳动物利用C16:0脂肪酸和氨基酸serine合成sphingolipids,但线虫可能是利用mmBCFAC15iso和serine合成sphingolipids。

接下来是关于主要用于能量储存的中性脂,及储存中性脂的脂滴,也涉及到线虫卵黄(yolk)。组成卵黄和脂滴脂类很大的区别是,脂滴的脂主要是TAG,构成其单纯膜的磷脂含量很低;而卵黄中磷脂含量远远多于TAG;线虫中脂滴主要在肠道和皮下组织细胞,卵黄在生殖腺,这两者之间的相互关系很多未知。卵黄被认为是在线虫肠道合成,通过RME-2(功能上有些类似哺乳动物的LDLR),把卵黄内吞转运给卵子。线虫基因组有6个类似哺乳动物apolipopreotein,VIT-1-6,是卵黄的组成蛋白。去年,我们在Genetics上发表的文章发现VIT-2其它功能——转运食物中的脂类到脂滴储存。

线虫脂滴蛋白质组学(刘平生实验室和Watts实验室发表结果),发现DHS-3、PLIN-1、ACS-4等重要的脂滴蛋白。PLIN是非常保守的脂滴结构蛋白,线虫中只有一个,以前称之为MDT-28,我们很早也发现其影响脂滴大小和脂肪储存。目前在香港科技大学的HoYi Mak实验室发现ACS-22-DGAT-2介道脂类从ER转运到脂滴储存。我们未发表的结果发现,ACS-22-DGAT-2可能介道的是肥胖状态下的TAG储存。

FITM-2是一个从线虫到果蝇和哺乳动物细胞都非常保守的ER蛋白,前面的博客中我介绍过该蛋白对ER结构和形态非常重要,其功能缺失后,脂滴不能从ER出芽生成。还有HoYi Mak实验室报道了ER蛋白atlastinGTPase和可能参与过氧化酶体b氧化的蛋白MAOC-1、DHS-28和DAF-22等。Mak和其博后目前在首都师范大学的张少兵实验室的研究表明MAOC-1、DHS-28和DAF-22参与线虫dauer信息素合成,功能缺失后也导致脂滴变大、脂肪过渡积累,但其作用机理未知。我们筛选新的脂代谢酶基因时也发现一个新的可能参与过氧化酶体b氧化的蛋白也影响脂滴和脂肪储存。另外一个重要的脂滴蛋白是——参与脂肪分解的ATGL-1和及其coactivatorABHD-5.2(哺乳动物CGI-58)等。

关于线虫脂滴观察方法就不再重复讲了。这篇综述也简要的介绍了影响/调控线虫脂肪储存的核心因子或者信号通路。

Autophagy这几年大红大紫,哺乳动物中自噬有关的一些基因功能缺失会导致脂肪积累。但线虫中,正常饲喂情况下,自噬相关基因功能缺失反而导致脂肪储存下降,导致这种物种间差别的机制未知。

随后是关于秀丽线虫膜脂的介绍。膜脂主要包括磷脂、鞘磷脂和胆固醇等。

磷脂的合成主要是两条途径,CDP-DAG pathway和Kennedypathway,它们的共同之处以glycerol-3phosphate为底物,先合成PA。这两条途径在线虫中都存在。我们2013年发表在BMCGenomics上的文章也列出了这些代谢途径和可能参与的代谢基因/酶。构成生物膜主要的磷脂是PC和PE,它们在模内外的分布是不一致的。有趣的是,2015年一篇文章通过N15标记,质谱检测发现,线虫磷脂大约每日就更新一遍。

2016年,Watts实验室在Journalof Lipid Research(JLR)发表了一篇文章,揭示了线虫中ether-linkedPE合成途径和相关基因突变体表型。在线虫脂类代谢途径研究上,Watts有两大贡献,第一是2002年在PNAS上发表了秀丽线虫PUFAs合成途径,第二就是去年在JLR揭示了etherlipids合成途径。与其它脂类合成位置不一样的是,etherlipids可能是在过氧化物酶体中进行。

线虫中sphingolipids的研究不多,主要是韩珉实验室、VerenaGöbel(其博后张洪杰目前在澳门大学任教)实验室,集中在sphingolipids与线虫的生长发育、组织器官发育形成的研究。2009年在Science上发表的一篇文章(通讯作者为HowardRiezman和Jean-ClaudeMartinou)发现线虫有两个ceramide synthases HYL-1和HYL-2,它们作用的脂肪酸链长不一样,其抵抗低氧的功能完全相反。

线虫,和一些无脊柱动物一样,缺少合成胆固醇的关键酶。因此,线虫自身不能合成胆固醇,需要在培养基中添加胆固醇。虽然线虫中其胆固醇含量很低,但对线虫的发育、寿命等至关重要。

总之,读完这篇综述,我感觉这是十年来全前面、最细致、组织结构非常清晰的综述。看来,如果按线虫脂类分子种类再写综述,短期内是很难超越这篇文章。

参考文献:

Ashrafi, K. (2007). Obesity and the regulation of fat metabolism.WormBook, 1-20.

Lemieux,G.A., and Ashrafi, K. (2015). Insights and challenges in using C. elegans forinvestigation of fat metabolism. Crit Rev Biochem Mol50, 69-84.

Mak,H.Y. (2012). Lipid droplets as fat storage organelles in Caenorhabditiselegans: Thematic Review Series: Lipid Droplet Synthesis and Metabolism: fromYeast to Man. Journal of Lipid Research53, 28-33.

Mullaney,B.C., and Ashrafi, K. (2009). C. elegans fat storage and metabolic regulation.Biochim Biophys Acta1791, 474-478.

Srinivasan,S. (2015). Regulation of body fat in Caenorhabditis elegans. Annu Rev Physiol77, 161-178.

Watts,J.L. (2009). Fat synthesis and adiposity regulation in Caenorhabditis elegans.Trends Endocrinol Metab20, 58-65.

Witting,M., and Schmitt-Kopplin, P. (2016). The Caenorhabditis elegans lipidome: Aprimer for lipid analysis in Caenorhabditis elegans. Arch Biochem Biophys589, 27-37.

Ying,L., and Zhu, H. (2016). Current advances in the functional studies of fattyacids and fatty acid-derived lipids in C. elegans. Worm5, e1184814.

Zhu, H.,and Han, M. (2014). Exploring developmental and physiological functions offatty acid and lipid variants through worm and fly genetics. Annu Rev Genet48, 119-148.

转载本文请联系原作者获取授权,同时请注明本文来自梁斌科学网博客。

链接地址:http://blog.sciencenet.cn/blog-104614-1081126.html

上一篇:2017冷泉港.亚洲会议“脂代谢与代谢紊乱”报道

下一篇:读书报告2017-10-14

内容概要:本文围绕密集城市环境中无人机空对地(U2G)路径损耗展开研究,利用Matlab代码实现相关仿真与分析,重点探讨无人机在复杂城市场景下的通信信号衰减特性。研究结合实际城市地形与建筑分布,建立路径损耗模型,并通过多种优化算法进行仿真验证,旨在提升无人机通信链路的可靠性与稳定性。此外,文中还涉及多无人机协同路径规划、三维航迹优化、动态环境适应等问题,展示了无人机在城市空中交通、物流配送、协同监测等应用场景中的关键技术实现。; 适合人群:具备Matlab编程基础,从事通信工程、无人机系统设计、智能优化算法研究等相关领域的科研人员及研究生;熟悉路径规划、无线通信建模或智能算法应用的技术人员。; 使用场景及目标:①研究密集城区中无人机通信的路径损耗机制,构建符合实际环境的信号传播模型;②利用Matlab实现路径损耗仿真,优化无人机飞行高度、位置与通信参数;③结合智能优化算法(如遗传算法、粒子群、Q-learning等)提升多无人机协同效率与通信质量;④为城市空中交通管理系统、无人机物流网络设计提供技术支持与仿真验证手段。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注路径损耗建模与优化算法的实现细节,同时可扩展至多目标优化、动态环境适应等方向,深入理解无人机在复杂城市环境中的通信与路径规划协同机制。
内容概要:本文研究了柔性作业车间调度问题(FJSP),该问题是经典作业车间调度问题的扩展,允许工序在多台机器上加工,需同时优化机器选择与工序排序,以最小化最大完工时间等目标。由于FJSP属于NP-hard问题,传统方法难以应对大规模实例,因此提出采用部落竞争与成员合作算法(CTCM)进行求解,并通过Matlab代码实现。该算法模拟部落间的竞争与内部成员的合作机制,增强全局搜索能力和收敛效率,从而有效应对复杂的调度环境。文中介绍了算法设计思路、实现流程及仿真实验结果,验证了CTCM在解决FJSP问题上的有效性与优越性。; 适合人群:具备一定编程基础,熟悉优化算法与Matlab工具,从事智能制造、生产调度或运筹优化相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于制造系统中的多工序、多机器动态调度场景,提升生产效率与资源利用率;②为研究新型群智能优化算法在复杂组合优化问题中的应用提供案例支持;③通过Matlab代码实现帮助读者理解算法细节并进行二次开发与性能对比。; 阅读建议:建议读者结合Matlab代码深入理解算法实现过程,关注CTCM中部落划分、竞争机制与协作策略的设计逻辑,并可通过更换数据集或引入约束条件进行扩展实验,进一步掌握智能优化算法在实际调度问题中的调
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值