深度学习之开端备注

本文对比了Adagrad、RMSprop、Adadelta和Adam四种优化器在深度学习训练过程中的表现。Adagrad适合稀疏样本,RMSprop解决了Adagrad学习率递减过快的问题,Adadelta无需手动设置学习率但实际效果不佳。Adam被吴恩达推荐,综合表现最佳。

 

 

           

 

              

Adagrad //适合稀疏样本

RMSprop//借鉴Adagrad的思想,改进使得不会出现学习率越来越低的问题

      

由此可见Adadelta既不需要输入学习率等参数,而且表现得非常好!!但是我试了几次,这个优化器效果极差!!还是具体问题具体分析吧

  由此可见只有SGD无法逃离局部最小值,此处仍然是Adadelta速度最快

但是我们并不能因此不使用SGD,因为评价一个训练器的好坏不是靠速度,而是靠最终的准确率!

最好的训练器是在训练速度适中的情况下,准确率最高的!吴推荐Adam,具体是什么得因问题而定!

还是使用Adam吧!这个训练器很强!

 

转载于:https://www.cnblogs.com/ningxinjie/p/11333918.html

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值