Best Meeting Point

A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.

For example, given three people living at (0,0)(0,4), and (2,2):

1 - 0 - 0 - 0 - 1
|   |   |   |   |
0 - 0 - 0 - 0 - 0
|   |   |   |   |
0 - 0 - 1 - 0 - 0

The point (0,2) is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.

Hint:

  1. Try to solve it in one dimension first. How can this solution apply to the two dimension case?

 

Hide Company Tags

 

 
 1 public class Solution {
 2     public int minTotalDistance(int[][] grid) {
 3         List<Integer> row = new ArrayList<Integer>();
 4         List<Integer> col = new ArrayList<Integer>();
 5         
 6         for (int i = 0; i < grid.length; i++) {
 7             for (int j = 0; j < grid[i].length; j++) {
 8                 if (grid[i][j] == 1) {
 9                     row.add(i);
10                     col.add(j);
11                 }
12             }
13         }
14         
15         return getDistance(row) + getDistance(col);
16     }
17     
18     private int getDistance(List<Integer> list) {
19         Collections.sort(list);
20         int result = 0;
21         for (int i = 0, j = list.size() - 1; i < j; i++, j--)
22             result += list.get(j) - list.get(i);
23         return result;
24     }
25 }

 

转载于:https://www.cnblogs.com/amazingzoe/p/6411815.html

import randomimport multiprocessing# 定义目标函数,这里以一个简单的二维函数为例def target_func(x, y): return x ** 2 + y ** 2# 定义爬山算法,这里使用随机爬山算法def hill_climbing(start_point): current_point = start_point current_value = target_func(*current_point) while True: next_points = [(current_point[0] + random.uniform(-1, 1), current_point[1] + random.uniform(-1, 1)) for _ in range(10)] next_values = [target_func(*p) for p in next_points] next_point, next_value = min(zip(next_points, next_values), key=lambda x: x[1]) if next_value < current_value: current_point = next_point current_value = next_value else: break return current_point, current_value# 定义并行爬山函数def parallel_hill_climbing(num_workers, num_iterations, start_points): global_best_point, global_best_value = None, float('inf') pool = multiprocessing.Pool(num_workers) for i in range(num_iterations): results = pool.map(hill_climbing, start_points) best_point, best_value = min(results, key=lambda x: x[1]) if best_value < global_best_value: global_best_point, global_best_value = best_point, best_value start_points = [global_best_point] * len(start_points) return global_best_point, global_best_value# 测试代码if __name__ == '__main__': num_workers = 4 num_iterations = 10 start_points = [(random.uniform(-10, 10), random.uniform(-10, 10)) for _ in range(num_workers)] best_point, best_value = parallel_hill_climbing(num_workers, num_iterations, start_points) print(f'Best point: {best_point}, best value: {best_value}')
最新发布
05-05
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值