A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|
.
For example, given three people living at (0,0)
, (0,4)
, and (2,2)
:
1 - 0 - 0 - 0 - 1 | | | | | 0 - 0 - 0 - 0 - 0 | | | | | 0 - 0 - 1 - 0 - 0
The point (0,2)
is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.
Hint:
- Try to solve it in one dimension first. How can this solution apply to the two dimension case?
1 public class Solution { 2 public int minTotalDistance(int[][] grid) { 3 List<Integer> row = new ArrayList<Integer>(); 4 List<Integer> col = new ArrayList<Integer>(); 5 6 for (int i = 0; i < grid.length; i++) { 7 for (int j = 0; j < grid[i].length; j++) { 8 if (grid[i][j] == 1) { 9 row.add(i); 10 col.add(j); 11 } 12 } 13 } 14 15 return getDistance(row) + getDistance(col); 16 } 17 18 private int getDistance(List<Integer> list) { 19 Collections.sort(list); 20 int result = 0; 21 for (int i = 0, j = list.size() - 1; i < j; i++, j--) 22 result += list.get(j) - list.get(i); 23 return result; 24 } 25 }