结论:固定端点的所有子段GCD只会有$O(\log)$种,因为一个数的质因子个数是这个级别的。
从左到右枚举右端点,用一个数组记录所有GCD相同的子段的第一个位置,每次线性更新与合并。$O(n\log n)$
1 #include<cstdio> 2 #include<algorithm> 3 #define rep(i,l,r) for (int i=(l); i<=(r); i++) 4 using namespace std; 5 6 typedef long long ll; 7 const int N=100010; 8 int n,top,S[N],S2[N]; 9 ll ans,a[N],b[N],b2[N]; 10 ll gcd(ll a,ll b){ return b ? gcd(b,a%b) : a; } 11 12 int main(){ 13 scanf("%d",&n); 14 rep(i,1,n) scanf("%lld",&a[i]); 15 rep(i,1,n){ 16 S[++top]=i; b[top]=a[i]; int tot=0; 17 for (int j=top-1; j; j--) b[j]=gcd(b[j],b[j+1]); 18 rep(j,1,top) if (b[j]!=b[j-1]) b2[++tot]=b[j],S2[tot]=S[j]; 19 rep(j,1,tot) b[j]=b2[j],S[j]=S2[j]; top=tot; 20 rep(j,1,top) ans=max(ans,b[j]*(i-S[j]+1)); 21 } 22 printf("%lld\n",ans); 23 return 0; 24 }