JavaScript:有符号整数与无符号整数相互转化

部署运行你感兴趣的模型镜像

确实巧妙:原文http://blog.csdn.net/kandyer/article/details/8241937

 

<script language="JavaScript">
<!--
    var signed, unsigned;
    signed = -1;
    unsigned = signed>>>0;
    alert ("unsigned="+unsigned);        // unsigned=4294967295
    signed = unsigned << 0;
    alert ("signed="+signed);                // signed=-1
//-->
</script>
代码:
unsigned = signed>>>0;
通过使用无符号右移运算符,位动位数为0,可以将32位有符号整数,转化为32位无符号整数。
signed = unsigned << 0;
通过使用左移运算符,位动位数为0,可以将32位无符号整数,转化为32位有符号整数。
注:JavaScript的所有位操作都是先将操作对象转化为32位有符号数进行的。具体的细节可以去查Ecma-262规范(JavaScript 的正式名称是 "ECMAScript",其语法由Ecma-262规范描述)。

转载于:https://www.cnblogs.com/oxspirt/p/5018471.html

您可能感兴趣的与本文相关的镜像

Langchain-Chatchat

Langchain-Chatchat

AI应用
Langchain

Langchain-Chatchat 是一个基于 ChatGLM 等大语言模型和 Langchain 应用框架实现的开源项目,旨在构建一个可以离线部署的本地知识库问答系统。它通过检索增强生成 (RAG) 的方法,让用户能够以自然语言与本地文件、数据库或搜索引擎进行交互,并支持多种大模型和向量数据库的集成,以及提供 WebUI 和 API 服务

<think>我们正在讨论整数除法的商和余数的符号问题。根据引用[2]和[3],取余和取模运算在数学和编程中可能有不同的定义。用户询问的是整数商和余数的符号如何确定。 关键点: 1. 整数商:即两个整数相除后,舍弃小数部分得到的整数。不同的除法方式(向零取整、向下取整等)会影响商的符号。 2. 余数:由等式 a = b*q + r 定义,其中q是商,r是余数。余数的符号取决于商的取整方式。 常见的取整方式: - 向零取整(Truncated Division):商向零方向取整(绝对值减小),余数的符号被除数相同。 - 向下取整(Floor Division):商向负无穷方向取整,余数的符号除数相同(在数学中,余数总是非负的,但在编程中,如果除数为负,余数可能为负)。 根据引用[4],在Java、C、C++中,%运算符是取余运算(remainder),采用向零取整方式。而Python中的%是取模运算(modulus),采用向下取整方式。 因此,整数商和余数的符号取决于编程语言和所使用的运算符。 下面我们分别说明两种方式: 1. 向零取整(Truncated Division): 商 = 向零方向取整(即直接去掉小数部分) 余数 = 被除数 - 除数 * 商 此时,余数的符号被除数相同。 例如: 7 ÷ 3: 商 = 2, 余数 = 1 (因为7=3*2+1) -7 ÷ 3: 商 = -2, 余数 = -1 (因为-7=3*(-2)+(-1)) 7 ÷ -3: 商 = -2, 余数 = 1 (因为7=(-3)*(-2)+1)注意:这里余数1,因为被除数是正数。 -7 ÷ -3: 商 = 2, 余数 = -1 (因为-7=(-3)*2+(-1)) 2. 向下取整(Floor Division): 商 = floor(被除数/除数) 即向负无穷取整 余数 = 被除数 - 除数 * 商 此时,余数的符号除数相同(或者余数总是非负,取决于定义,但通常数学上要求0≤r<|b|,所以余数是非负的。但在编程中,如果除数为负,余数可能为负?实际上,在向下取整中,余数的符号除数相同,但数学上一般要求余数非负,所以当除数为负时,余数也是非负?这里需要澄清。) 实际上,数学上的模运算要求余数非负(0≤r<|b|)。所以当使用向下取整时,如果除数为负,那么商需要调整使得余数落在[0, |b|)区间内。 例如(数学上的模运算): 7 mod 3 = 1 (因为7=3*2+1,余数1) -7 mod 3:我们希望余数在[0,3)之间,所以需要将商调整为-3(因为-3*3=-9,余数需要是2:-7-(-9)=2)? 实际上,向下取整时,商是floor(-7/3)=floor(-2.333) = -3,那么余数=-7-3*(-3)= -7+9=2。 7 mod -3:在数学模运算中,除数通常取正数,所以一般不考虑除数为负的情况。但编程语言中,如果除数为负,则采用不同的处理。 在编程中,不同语言的处理: C、C++、Java:整数除法采用向零取整,余数符号被除数相同。 Python:采用向下取整,余数符号除数相同(且余数非负?实际上,在除数正的情况下余数非负,除数负的情况下余数非正?)。但根据引用[4]和[3],取模运算的结果的符号除数相同。 因此,用户的问题:获取整数商和取余的符号,需要明确是在什么语言或什么定义下。 总结: 设被除数为a,除数为b(b≠0),商为q,余数为r,满足 a = b * q + r,且|r|<|b|。 两种常见情况: 情况1:向零取整(Truncated) q = trunc(a/b) (即直接去掉小数部分) r = a - b*q 此时,r的符号a相同。 情况2:向下取整(Floor) q = floor(a/b) (向负无穷取整) r = a - b*q 此时,r的符号b相同(或者更准确地说,r总是非负?实际上,当b为正时,r非负;当b为负时,r非正?) 但是,数学上的余数通常要求非负(0≤r<|b|),所以当b为正时,两种取整方式得到的余数都是非负;当b为负时,向零取整可能得到负的余数,而向下取整(模运算)会调整商使得余数非负?实际上,在模运算中,余数总是非负的。 例如,在Python中(向下取整): 7 // 3 -> 2, 7 % 3 -> 1 7 // -3 -> -3, 7 % -3 -> -2 (因为7 = (-3)*(-3) + (-2) ? 不对,应该是7 = (-3)*(-3) -2,但这样余数是负数,不符合非负要求?) 实际上,在Python中,取模运算的结果r满足0<=r<|b|吗?不,Python的%运算结果总是除数同号,并且满足 abs(r)<abs(b) 且 a = b*q + r 成立。 看例子: 7 % -3 在Python中等于 -2?因为7 // -3 等于 -3,那么7 = (-3)*(-3) + (-2) -> 7=9-2,即7=7,成立。但是余数是负的(-2),而除数也是负的(-3),所以同号。但数学上通常要求余数非负,所以在数学上我们可能更希望7 mod 3=1,而7 mod -3则没有定义(因为模数一般为正)?或者我们定义模运算的模数为正,那么7 mod 3=1,而-7 mod 3=2。 因此,用户需要明确: - 如果是在数学问题中,余数通常是非负的(0<=r<|b|),此时商需要向下取整(当b为正时)或向上取整(当b为负时?)以保证余数非负。但实际上,数学上一般除数b为正数。 - 在编程中,取决于语言。 为了回答用户问题,我们分两种情况: 1. 当使用向零取整(如C、Java等): 整数商的符号:被除数和除数的符号有关,同号为正,异号为负(但注意0的情况)。 余数的符号:被除数相同。 2. 当使用向下取整(如Python): 整数商的符号:当a和b同号时,商为正;异号时,商为负(注意,这里商是向下取整,所以对于负数除法,商会更负)。 余数的符号:除数相同。 但更严格地说,我们可以用公式: 向零取整: q = trunc(a / b) (即如果a/b为正,则舍去小数部分;为负,也舍去小数部分,也就是向零取整) r = a - b * q 向下取整: q = floor(a / b) (取不大于a/b的最大整数) r = a - b * q 因此,符号: 在向零取整中: q的符号:如果a和b同号(即a*b>0),则q为正;异号(a*b<0)则q为负(注意,a和b都不能为0,除数b不为0)。 r的符号:a相同。 在向下取整中: q的符号:如果a/b是整数,则q就是那个整数;否则,如果a/b为正,则q为小于等于a/b的最大整数(正数);如果a/b为负,则q为小于等于a/b的最大整数(即可能更负)。因此,q的符号不一定a/b相同(因为向下取整,当a/b为负小数时,q会向下取整,所以q的绝对值会变大,符号为负)。 r的符号:b相同(因为r = a - b*q,而q是向下取整,所以当b为正时,r非负;当b为负时,r非正)。注意,r的绝对值小于|b|。 用户可能需要一个通用的判断方法,但需要指定取整方式。 因此,我建议用户明确自己使用的语言或取整方式。 如果用户需要数学上的余数(非负),那么无论除数正负,余数都应该是非负的(0<=r<|b|),此时需要调整商: 当b>0时,商取 floor(a/b) 即可,余数r>=0。 当b<0时,为了得到非负余数,商应取 ceil(a/b)(向上取整)?因为这样余数才能落在[0,|b|)内。但注意,数学上一般除数b取正数,所以模运算通常只考虑b>0的情况。 例如:数学上,-7除以3,我们希望余数非负,所以: -7 = 3 * (-3) + 2 (商-3,余2) 这里,商是向下取整(因为-7/3≈-2.33,向下取整就是-3)就可以得到余数2(正数,除数3同号?实际上除数3为正,余数2也是正,但数学上我们只关心非负,所以2就是我们要的余数)。 所以,在数学中,我们通常采用向下取整(当除数b为正时)来确保余数非负。当除数b为负时,我们可以将其转化为正除数的情况:a mod b (b<0) 定义为 a mod (-b)?但这样可能会改变模运算的结果。 综上所述,回答用户问题: 整数商和余数的符号取决于所采用的除法规则: 1. **向零取整(Truncated Division)**: - 整数商的符号:由被除数和除数决定,同号为正,异号为负。 - 余数的符号:被除数相同。 2. **向下取整(Floor Division)**: - 整数商的符号:当被除数和除数同号时,商的符号为正;异号时为负(注意,商的绝对值可能更大)。 - 余数的符号:除数相同(且满足 $0 \leq |r| < |b|$,但符号除数相同,即当除数b为负时,余数r为负或非正?实际上,在向下取整中,当除数b为正时,余数非负;当除数b为负时,余数非正?)。 然而,在数学上,我们通常要求余数是非负的(即 $0 \leq r < |b|$),此时: - 整数商的确定:应满足 $a = b \cdot q + r$,其中 $r$ 非负且小于 $|b|$。 - 商的符号:由被除数和除数的符号以及取整方式共同决定。 因此,如果用户想要数学上非负的余数,那么: 当 $b>0$ 时,商 $q=\lfloor a/b \rfloor$(向下取整),此时 $0 \leq r < b$。 当 $b<0$ 时,为了得到非负余数,我们可以取 $q=\lceil a/b \rceil$(向上取整),然后 $r = a - b \cdot q$,此时 $r$ 非负(因为 $b<0$,向上取整使得 $q$ 是一个较小的整数,从而 $b\cdot q$ 会大于等于 $a$,因此 $r=a-bq\geq 0$,并且 $|r|<|b|$)。另一种做法是先计算 $|b|$,然后按正除数处理。 例如:$a=-7, b=-3$,如果我们要余数非负,那么: $q=\lceil (-7)/(-3) \rceil = \lceil 2.333 \rceil = 3$,则 $r=a-b\cdot q = -7 - (-3)\cdot3 = -7+9=2$(满足0<=2<3)。 或者,我们也可以将除数取正:计算 $a$ 除以 $|b|$,即 $q=\lfloor -7/3 \rfloor = \lfloor -2.333\rfloor = -3$,然后余数 $r = a - |b| \cdot q = -7 - 3\cdot(-3) = 2$(这里除数被视为正数,所以用|b|)。 所以,在数学上,我们通常将除数视为正数,然后采用向下取整的方式(即商取小于等于a/b的最大整数),这样余数就是非负的。如果除数为负,则先将其转化为正除数,然后按同样的规则计算。 最后,在实际编程中,用户需要查阅所用语言的文档来确定整数除法和取余的行为。 希望这个回答能够帮助用户理解整数商和余数符号的确定。 </think>在整数除法中,商和余数的符号取决于编程语言的实现规则和数学定义。以下是系统分析: ### 一、数学定义符号规则 设被除数为 $a$,除数为 $b$($b \neq 0$),满足基本等式: $$a = b \cdot q + r \quad \text{其中} \quad 0 \leq |r| < |b|$$ 商 $q$ 和余数 $r$ 的符号由**取整方式**决定: 1. **向零取整(Truncated Division)** - 商 $q = \operatorname{trunc}(a / b)$(直接舍弃小数部分) - **符号规则**: - 商 $q$ 的符号:$a$ $b$ 同号时为正,异号时为负 - 余数 $r$ 的符号:**被除数 $a$ 相同** - 采用语言:C、Java、JavaScript - 示例: - $(-7) \div 3$ → $q = -2$, $r = -1$($r$ $a$ 同号) - $7 \div (-3)$ → $q = -2$, $r = 1$($r$ $a$ 同号) 2. **向下取整(Floor Division)** - 商 $q = \lfloor a / b \rfloor$(向负无穷取整) - **符号规则**: - 商 $q$ 的符号:$a/b \geq 0$ 时为正,$a/b < 0$ 时为负 - 余数 $r$ 的符号:**除数 $b$ 相同** - 采用语言:Python、Ruby - 示例: - $(-7) \div 3$ → $q = -3$, $r = 2$($r$ $b$ 同号) - $7 \div (-3)$ → $q = -3$, $r = -2$($r$ $b$ 同号) ### 二、数学模运算的特殊性 数学中通常要求余数非负($0 \leq r < |b|$)[^2][^3]: - **当 $b > 0$ 时**:强制 $r \geq 0$,此时商需向下取整:$q = \lfloor a / b \rfloor$ - **当 $b < 0$ 时**:需转换 $b' = |b|$ 后计算,保证 $0 \leq r < |b|$ 示例:$a = -7,\, b = -3$ $$q = \lceil (-7)/(-3) \rceil = \lceil 2.333 \rceil = 3, \quad r = -7 - (-3)\cdot3 = 2$$ ### 三、编程语言实现对比 | 语言 | 除法类型 | 运算符 | 商 $q$ 符号规则 | 余数 $r$ 符号规则 | |------------|------------------|--------|------------------------|---------------------| | C/Java | 向零取整 | `a/b` | 同号为正,异号为负 | 被除数 $a$ 相同 | | Python | 向下取整 | `a//b` | 由 $a/b$ 值域决定 | 除数 $b$ 相同 | | 数学模运算 | 非负余数优先 | 无 | 通过 $\lfloor \rfloor$ 或 $\lceil \rceil$ 调整 | 恒满足 $0 \leq r < \|b\|$ | ### 四、总结建议 1. **明确需求场景**: - 编程实现 → 查阅所用语言的除法规范 - 数学计算 → 优先保证余数非负($r \geq 0$) 2. **符号速判口诀**: - 若余数符号同被除数 $a$ → **向零取整** - 若余数符号同除数 $b$ → **向下取整** > 示例验证: > - 在 Python 中计算 `(-7) % 3`: > ```python > print(-7 // 3) # 输出 -3(商) > print(-7 % 3) # 输出 2(余数除数3同号) > ``` > - 在 C 中计算 `-7 % 3`: > ```c > printf("%d\n", -7 / 3); // 输出 -2(商) > printf("%d\n", -7 % 3); // 输出 -1(余数被除数-7同号) > ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值