Peaks

题意

给定一颗有点权以及边权树以及若干询问,每次求从给定节点出发经过长度均不超过k的边能达到的点中,第k高的点的点权。


思路

看到对边长度的限制,没有思路。

提高知识水平之后发现有所谓kruskal重构树这一操作。(提高关键词敏感度)

kruskal重构树的原理及实现细节放到另一篇文章里面写,这里默认所有人都会了。

那么对于询问中的边权限制,其实我们就是在主席树上查询点权小于等于k的节点的子树中的k大值。

代码

#include <bits/stdc++.h>

using namespace std;

namespace StandardIO {

    template<typename T>inline void read (T &x) {
        x=0;T f=1;char c=getchar();
        for (; c<'0'||c>'9'; c=getchar()) if (c=='-') f=-1;
        for (; c>='0'&&c<='9'; c=getchar()) x=x*10+c-'0';
        x*=f;
    }

    template<typename T>inline void write (T x) {
        if (x<0) putchar('-'),x*=-1;
        if (x>=10) write(x/10);
        putchar(x%10+'0');
    }

}

using namespace StandardIO;

namespace Project {
    
    const int N=500001;
    
    int n,m,q,len;
    int h[N],b[N];
    struct node {
        int from,to,val;
    } edge[N];
    int cnt,tot;
    int head[N];
    struct gnode {
        int to,next;
    } G[N];
    int tmp;
    int fa[N],val[N],range[N][2],f[N][21];
    int nodes;
    int root[N];
    struct tnode {
        int ls,rs,val;
    } tree[N*21];
    
    inline void add (int a,int b) {
        G[++cnt].to=b,G[cnt].next=head[a],head[a]=cnt;
    }
    inline bool cmp (node x,node y) {
        return x.val<y.val;
    }
    inline int find (int x) {
        return (x==fa[x])?x:fa[x]=find(fa[x]);
    }
    void build (int l,int r,int &pos) {
        pos=++nodes;
        if (l==r) return;
        int mid=(l+r)>>1;
        build(l,mid,tree[pos].ls),build(mid+1,r,tree[pos].rs);
    }
    void update (int l,int r,int v,int las,int &pos) {
        pos=++nodes;
        tree[pos]=tree[las],++tree[pos].val;
        if (l==r) return;
        int mid=(l+r)>>1;
        if (v<=mid) update(l,mid,v,tree[las].ls,tree[pos].ls);
        else update(mid+1,r,v,tree[las].rs,tree[pos].rs);
    }
    int query (int l,int r,int k,int las,int now) {
        if (l==r) return l;
        int mid=(l+r)>>1,t=tree[tree[now].rs].val-tree[tree[las].rs].val;
        if (k<=t) return query(mid+1,r,k,tree[las].rs,tree[now].rs);
        return query(l,mid,k-t,tree[las].ls,tree[now].ls);
    }
    void dfs (int now) {
        for (register int i=1; i<=20; ++i) {
            f[now][i]=f[f[now][i-1]][i-1];
        }
        range[now][0]=tmp;
        if (!head[now]) return range[now][0]=++tmp,update(1,len,lower_bound(b+1,b+len+1,h[now])-b,root[tmp-1],root[tmp]),void();
        for (register int i=head[now]; i; i=G[i].next) {
            int to=G[i].to;
            dfs(to);
        }
        range[now][1]=tmp;
    }
    
    inline void MAIN () {
        read(n),read(m),read(q);
        for (register int i=1; i<=n; ++i) {
            read(h[i]),b[i]=h[i],fa[i]=i;
        }
        sort(b+1,b+n+1),len=unique(b+1,b+n+1)-b-1;
        for (register int i=1; i<=m; ++i) {
            read(edge[i].from),read(edge[i].to),read(edge[i].val);
        }
        sort(edge+1,edge+m+1,cmp),tot=n;
        for (register int i=1; i<=m; ++i) {
            int x=find(edge[i].from),y=find(edge[i].to);
            if (x==y) continue;
            val[++tot]=edge[i].val,fa[tot]=fa[x]=fa[y]=tot,f[x][0]=f[y][0]=tot;
            add(tot,x),add(tot,y);
        }
        build(1,len,root[0]);
        dfs(tot);
        while (q--) {
            int x,y,z;
            read(x),read(y),read(z);
            for (register int i=20; i>=0; --i) {
                if (f[x][i]&&val[f[x][i]]<=y) x=f[x][i];
            }
            if (tree[root[range[x][1]]].val-tree[root[range[x][0]]].val<z) {
                write(-1);
            } else {
                write(b[query(1,len,z,root[range[x][0]],root[range[x][1]])]);
            }
            putchar('\n');
        }
    }
    
}

int main () {
//  freopen(".in","r",stdin);
//  freopen(".out","w",stdout);
    Project::MAIN();
}

后记

恩??竟然有后记??

其实就是吐槽一下,这道题空间我开的很玄学,至今没有搞懂原理。(每次主席树的题都得调空间。。。)

顺便口胡一下离线做法:大概就是枚举权值,然后每次把点权小于权值的点两边合并一下,然后查询k大值。

转载于:https://www.cnblogs.com/ilverene/p/11494490.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值