[BZOJ3672][Noi2014]购票 斜率优化+点分治+cdq分治

3672: [Noi2014]购票

Time Limit: 30 Sec  Memory Limit: 512 MB
Submit: 1749  Solved: 885
[ Submit][ Status][ Discuss]

Description

 今年夏天,NOI在SZ市迎来了她30周岁的生日。来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会。
       全国的城市构成了一棵以SZ市为根的有根树,每个城市与它的父亲用道路连接。为了方便起见,我们将全国的 n 个城市用 1 到 n 的整数编号。其中SZ市的编号为 1。对于除SZ市之外的任意一个城市 v,我们给出了它在这棵树上的父亲城市 f v  以及到父亲城市道路的长度 s v
从城市 v 前往SZ市的方法为:选择城市 v 的一个祖先 a,支付购票的费用,乘坐交通工具到达 a。再选择城市 a 的一个祖先 b,支付费用并到达 b。以此类推,直至到达SZ市。
对于任意一个城市 v,我们会给出一个交通工具的距离限制 l v。对于城市 v 的祖先 a,只有当它们之间所有道路的总长度不超过 l v  时,从城市 v 才可以通过一次购票到达城市 a,否则不能通过一次购票到达。对于每个城市 v,我们还会给出两个非负整数 p v,q v  作为票价参数。若城市 v 到城市 a 所有道路的总长度为 d,那么从城市 v 到城市 a 购买的票价为 dp v+q v
每个城市的OIer都希望自己到达SZ市时,用于购票的总资金最少。你的任务就是,告诉每个城市的OIer他们所花的最少资金是多少。
 

Input

第 1 行包含2个非负整数 n,t,分别表示城市的个数和数据类型(其意义将在后面提到)。输入文件的第 2 到 n 行,每行描述一个除SZ之外的城市。其中第 v 行包含 5 个非负整数 f_v,s_v,p_v,q_v,l_v,分别表示城市 v 的父亲城市,它到父亲城市道路的长度,票价的两个参数和距离限制。请注意:输入不包含编号为 1 的SZ市,第 2 行到第 n 行分别描述的是城市 2 到城市 n。

Output

输出包含 n-1 行,每行包含一个整数。其中第 v 行表示从城市 v+1 出发,到达SZ市最少的购票费用。同样请注意:输出不包含编号为 1 的SZ市。

 

Sample Input

7 3
1 2 20 0 3
1 5 10 100 5
2 4 10 10 10
2 9 1 100 10
3 5 20 100 10
4 4 20 0 10

Sample Output


40
150
70
149
300
150

HINT

 

 

 


 


 


 


 


 


对于所有测试数据,保证 0≤pv≤106,0≤qv≤1012,1≤fv<v;保证 0<sv≤lv≤2×1011,且任意城市到SZ市的总路程长度不超过 2×1011


输入的 t 表示数据类型,0≤t<4,其中:


当 t=0 或 2 时,对输入的所有城市 v,都有 fv=v-1,即所有城市构成一个以SZ市为终点的链;


当 t=0 或 1 时,对输入的所有城市 v,都有 lv=2×1011,即没有移动的距离限制,每个城市都能到达它的所有祖先;


当 t=3 时,数据没有特殊性质。

n=2×10^5

Source

 1 #include<iostream>
 2 #include<cstring>
 3 #include<cstdlib>
 4 #include<cstdio>
 5 #include<cmath>
 6 #include<algorithm>
 7 #define ll long long
 8 #define maxn 200005
 9 using namespace std;
10 inline ll read() {
11     ll x=0,f=1;char ch=getchar();
12     for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-1;
13     for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';
14     return x*f;
15 }
16 int n,t;
17 struct Edge {
18     int to,nxt;
19     ll w;
20 }e[maxn*2];
21 int head[maxn],cnt;
22 inline void add(int u,int v,ll w) {e[cnt].nxt=head[u];e[cnt].to=v;e[cnt].w=w;head[u]=cnt++;}
23 ll lim[maxn],p[maxn],q[maxn],rt,mx[maxn],SZ=0,fa[maxn],dis[maxn],sz[maxn];
24 bool vis[maxn];
25 inline void findrt(int x,int pre) {
26     sz[x]=1;mx[x]=0;
27     for(int i=head[x];i>=0;i=e[i].nxt) {
28         int to=e[i].to;if(to==pre||vis[to]) continue;
29         findrt(to,x);sz[x]+=sz[to];
30         mx[x]=max(mx[x],sz[to]);
31     }
32     mx[x]=max(mx[x],SZ-sz[x]);
33     if(mx[rt]>mx[x]&&sz[x]>1) rt=x;
34 }
35 struct Node {
36     int id;ll val;
37     bool operator <(const Node tmp) const {
38         return val>tmp.val;
39     }
40 }a[maxn];
41 int tot=0;
42 void dfs(int x) {
43     for(int i=head[x];i>=0;i=e[i].nxt) {
44         int to=e[i].to;
45         dis[to]=dis[x]+e[i].w;dfs(to);
46     }
47 }
48 void dfs1(int x) {
49     a[++tot].val=dis[x]-lim[x];a[tot].id=x;
50     for(int i=head[x];i>=0;i=e[i].nxt) if(!vis[e[i].to]) dfs1(e[i].to);
51 }
52 ll dp[maxn],qq[maxn];
53 ll K(ll x,ll y) {return (dp[y]-dp[x])/(dis[y]-dis[x]);}
54 ll upd(int i,int j){ return dp[j]+(dis[i]-dis[j])*p[i]+q[i]; }
55 void solve(int x,int S) {
56     if(S==1) return;
57     rt=0;SZ=S;findrt(x,0);int root=rt;
58     for(int i=head[root];i>=0;i=e[i].nxt) vis[e[i].to]=1;
59     solve(x,S-sz[root]+1);tot=0;
60     for(int i=head[root];i>=0;i=e[i].nxt) dfs1(e[i].to);
61     sort(a+1,a+tot+1);
62     int now=root,tail=0;
63     for(int i=1;i<=tot;i++) {
64         while(now!=fa[x]&&dis[a[i].id]-lim[a[i].id]<=dis[now]) {
65             while(tail>1&&K(qq[tail],now)>=K(qq[tail-1],qq[tail])) tail--;
66             qq[++tail]=now;now=fa[now];
67         }
68         if(tail>0) {
69             int l=1,r=tail,pos=1;
70             while(l<=r) {
71                 int mid=(l+r)>>1;if(mid==tail) {pos=tail;break;}
72                 if(K(qq[mid],qq[mid+1])>=p[a[i].id]) l=mid+1,pos=mid+1;
73                 else r=mid-1;
74             }
75             dp[a[i].id]=min(dp[a[i].id],upd(a[i].id,qq[pos]));
76         }
77     }
78     for(int i=head[root];i>=0;i=e[i].nxt) {solve(e[i].to,sz[e[i].to]);}
79 }
80 int main() {
81     memset(head,-1,sizeof(head));
82     memset(dp,27,sizeof(dp));dp[1]=0;
83     n=read(),t=read();
84     for(int i=2;i<=n;i++) {
85         fa[i]=read();ll s=read();
86         add(fa[i],i,s);
87         p[i]=read(),q[i]=read(),lim[i]=read();
88     }
89     dfs(1);mx[0]=2147483647;solve(1,n);
90     for(int i=2;i<=n;i++) printf("%lld\n",dp[i]);
91 }
View Code

 

转载于:https://www.cnblogs.com/wls001/p/10138144.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策的下标。每次加入一个新的决策 i 时,我们可以将队列尾部的决策 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策就是最优决策。我们可以用类似于双指针的方法来维护队列头部的决策是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策。对于每个,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值