conference\workshop\symposium\congress 之间的区别

本文详细解析了Conference、Workshop、Symposium、Congress等不同类型的会议特点与区别,包括规模、参与者和活动形式等方面。

1、 Conference:是指正式的会议,通常持续几天,有一个特定的主题,将有共同爱好目的的人聚集到一起,在讨论会上经常发生正规讨论。相比较而言,讨论会一般是指特殊专业或学术活动。与congress比,规模较小,但涵义较高,信息交换较易。

2、 Workshop研习会:由几个人进行密集讨论的集会,通常需当场作练习,如:国际礼仪、站姿等等。 Workshop是泛指较小型,但互动性较高的会议.

3、Symposium:它的复数形式为Symposiums 或者Symposia。专指特殊学术讨论的集会。某种特定领域的专家,学者和与会者探讨一个特定的主题。与Conference相比较,Symposium一般更狭义特指某一范围。在规模上专题会比Conference小,类似forum,但参与人数较多,会期2-3天,而且较正式。
4、Congress:基本特点是由专属国家的政府或非政府组织的代表或委员参加。它的举办是为了讨论争端,计划和公众利益。通常规模大,有代表性,范围广。举例说明:第二届世界妇女大会由联合国举办,有来自世界各地的两万名代表出席。
【注:从规模上来说,基本排序为: Congress> Conference> Symposium> Workshop】

【其它有关会议的名称解释如下:】

5、 Meeting:是各类人为了某一目的进行聚会的通用总体称谓。它的最初意思是指与某人见面或聚首。在这里的意思是:如果有多于两个的人聚集到一起谈话和讨论,这种活动行为被称为会议。由于会议的定义相当广泛所以很难清晰的区分,它意指各类聚集,有准备或无准备的,正式或非正式的,时间可长可短,规模可大可小,参加人数可多可少等等。为了明确会议种类,因此会议名称需要进一步划分。

6、Convention:是一种例行会议,大量聚集人群讨论其组织和政团事务。例如每年的联合国大会,两年一次的金属协会会议。通常由博学的社团,专业学术协会或非政府组织主办。参加者是依指示参加,目的是为了组织特定目的或商讨政策等,convention有时会附带小型分组展览。
7、Forum:论坛实际上是一种公众集会,在那里人们交换思想,讨论问题,特别是重要的公众问题。举例:亚洲经济论坛会。

8、Lecture 演讲:仅由一位专家来作报告,报告后不一定会接受观众的提问。
9、Seminar 学术会议:通常是类似课堂的会议,一群专家藉一次或一系列集会来达到训练或进修的目的。不同于一般情况的会议,主要由发言者演示,同时其它的人先听之后参与讨论或发问。在这种意义上,一个学术会议可看成演讲加讨论--讨论通常跟在演讲后面。

10、Colloquium 学习报告:是seminar 的一种正式用法。通常指大型的学术会议分小组讨论。邀请某一领域的专家,专业人士参加,与会者将表示他们在特定领域的思想和看法,属于非正式不定期会议。
11、Panel Discussion 座谈:座谈成员是一群专家,对于专门课题提出观点再进行座谈,并且有一位主持人。
12、 Assembly 集会:正式的全体集会,参加者以组织成员为主,固定时间及地点定期举行。

posted on 2016-09-27 08:41 幢幢 阅读( ...) 评论( ...) 编辑 收藏

转载于:https://www.cnblogs.com/wjw2016/p/5911459.html

内容概要:本文研究基于纳什博弈交替方向乘子法(ADMM)的多微网主体能源共享模型,旨在实现多个微网之间的高效能源交互与优化调度。通过建立非合作博弈模型,各微网作为独立决策主体在满足自身需求的前提下追求成本最小化,利用ADMM算法实现分布式求解,确保隐私保护与计算效率。文中详细阐述了模型构建、博弈均衡分析、ADMM收敛性处理及仿真验证过程,并提供完整的Matlab代码实现,复现了SCI高水平论文的核心成果。; 适合人群:具备一定电力系统优化背景、博弈论基础知识及Matlab编程能力的研究生、科研人员或从事能源互联网、微电网调度相关工作的工程师;适合希望深入理解分布式优化算法在能源共享中应用的研究者。; 使用场景及目标:①掌握纳什博弈在多主体能源系统中的建模方法;②理解ADMM算法在分布式优化中的实现机制与收敛特性;③复现并拓展高水平SCI论文中的能源共享优化模型;④为微电网调度、能源市场机制设计等课题提供算法支持与代码参考。; 阅读建议:建议结合文档提供的Matlab代码逐段调试运行,深入理解变量设置、迭代流程与收敛判断逻辑;同时可延伸至其他分布式优化场景(如虚拟电厂、综合能源系统)进行模型迁移与改进。【SCI复现】基于纳什博弈ADMM的多微网主体能源共享研究(Matlab代码实现)
内容概要:本文介绍了一种基于变分模态分解(VMD)与麻雀搜索算法(SSA)优化的最小二乘支持向量机(LSSVM)相结合的多变量电力负荷预测模型,该模型通过Matlab代码实现。首先利用VMD对原始负荷数据进行分解,降低序列复杂度并提取不同频率特征;随后采用SSA优化LSSVM的关键参数,提升预测精度;最后将优化后的LSSVM用于各模态分量的预测并叠加得到最终负荷预测结果。该方法有效提高了负荷预测的准确性与稳定性,适用于多变量输入场景下的短期负荷预测任务。; 适合人群:具备一定电力系统背景Matlab编程能力的高校研究生、科研【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现)人员及从事能源预测相关工作的工程技术人员;熟悉机器学习算法并希望将其应用于实际负荷预测问题的研究者。; 使用场景及目标:①解决传统负荷预测模型精度不足、易受噪声干扰的问题;②实现对多影响因素(如温度、历史负荷等)耦合作用下的电力负荷高精度预测;③为智能电网调度、能源管理及电力市场决策提供可靠的数据支撑; 阅读建议:建议读者结合提供的Matlab代码逐步复现整个预测流程,重点关注VMD参数设置、SSA优化机制与LSSVM建模环节,同时可尝试替换数据集或引入其他优化算法进行对比实验,以深入掌握该混合预测模型的设计思路与调参技巧。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值